• Title/Summary/Keyword: High Efficiency Photobioreactor

Search Result 12, Processing Time 0.024 seconds

Growth Analysis of Chlamydomonas reinhardtii in Photoautotrophic Culture with Microdroplet Photobioreactor System (미세액적 광생물반응기를 활용한 광독립영양배양에서 Chlamydomonas reinhardtii의 성장성 분석)

  • Sung, Young Joon;Kwak, Ho Seok;Choi, Hong Il;Kim, Jaoon Young Hwan;Sim, Sang Jun
    • Korean Chemical Engineering Research
    • /
    • v.55 no.1
    • /
    • pp.80-85
    • /
    • 2017
  • Recently, microalgae which can produce high-value products have attracted increasing attention for biological conversion of $CO_2$. However, low photosynthetic efficiency and productivity have limited the practical use of microalgae. Thus, we developed microdroplet photobioreactor for the analysis of photoautotrophic growth of model alga, Chlamydomonas reinhardtii. $CO_2$ transfer rate was increased by integrating micropillar arrays and adjusting height of microchamber. These results were identified by change of cell growth rate and fluorescence intensity. Lastly, the photoautotrophic growth kinetics of C. reinhardtii in microdroplet photobioreactor were investigated under different $CO_2$ concentrations and light intensities for 96 hours. As a result, microdroplet photobioreactor was efficient platform for isolation and rapid evaluation of microalgal strains which have enhanced productivity of high-value products and growth performance.

Calculation of Light Penetration Depth in Photobioreactors

  • Lee, Choul-Gyun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.4 no.1
    • /
    • pp.78-81
    • /
    • 1999
  • Light penetration depth in high-density Chlorella cultures can be successfully estimated by Beer-Lambert's law. The efficiency of light energy absorption algal cultures was so high that algal cells near the illuminating surface shade the cells deep in the culture. To exploit the potential of high-density algal cultures, this mutual shading should be eliminated or minimized. However, providing more light energy will not ease the situation and it will simply drop the overall light utilization efficiency.

  • PDF

A Theoretical Consideration on Oxygen Production Rate in Microalgal Cultures

  • Kim, Nag-Jong;Lee, Choul-Gyun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.5
    • /
    • pp.352-358
    • /
    • 2001
  • Because algal cells are so efficient at absorbing incoming light energy, providing more light energy to photobioreactors would simply decrease energy conversion efficiency. Furthermore, the algal biomass productivity in photobioreactor is always proportional to the total photosynthetic rate. In order to optimize the productivity of algal photobioreactors (PBRs), the oxygen production rate should be estimated. Based on a simple model of light penetration depth and algal photosynthesis, the oxygen production rate in high-density microalgal cultures could be calculated. The estimated values and profiles of oxygen production rate by this model were found to be in accordance with the experimental data. Optimal parameters for PBR operations were also calculated using the model.

  • PDF

Process Development of Algae Culture for Livestock Wastewater Treatment Using Fiber-Optic Photobioreactor (축산폐수 처리를 위한 광섬유 생물반응기를 이용한 조류 배양 공정 개발)

  • 최정우;김영기;류재홍;이우창;이원홍;한징택
    • KSBB Journal
    • /
    • v.15 no.1
    • /
    • pp.14-21
    • /
    • 2000
  • In this study, algae cultivation using the photobioreactor has been applied to remove the nitrogen and phosphorus compounds in the wastewater of the livestock industry. The optimal ratio of nitrate and ortho-phosphate concentration was found for the enhancement of removal efficiency. To achieve the high density culture of algae, the photobioreactor consisted of optical fibers wes developed to get the sufficient light intensity. The light could be illuminated uniformly from light source to the entire reactor by the optical fibers. The structured kinetic model was proposed to describe the growth rate, consumption rate of nitrates and ortho-phosphates in algae culture. The self-organizing fuzzy logic controller incorporated with genetic algorithm was constructed to control the semi-continuous wastewater treatment system. The proposed fuzzy logic controller was applied to maintain the nitrated concentration at the given set-point with the control of wastewater feeding rate. The experimental results showed that the self-organizing fuzzy logic controller could keep the nitrate concentration and enhance algae growth.

  • PDF

A Study on the Design Criteria of Photobioreactor for the Efficiency of Light-Utilization (빛 이용효율 향상을 위한 광생물반응기 설계 기준에 관한 연구)

  • 류현진;이진석;오경근
    • KSBB Journal
    • /
    • v.19 no.4
    • /
    • pp.257-262
    • /
    • 2004
  • Recently, there is a growing interest in microalgae and the use of microalgae focused on the production of various high value metabolite used in food, pharmaceuticals and cosmetics. The key limiting factor in high density algal cultivation is the light and algal growth is defined by light intensity and light penetration depth into the culture medium. The effect of light with various light paths, S/V ratios, light intensities, and 50% duty cycle on the growth of microalgae was examined to enhance microalgal biomass productivity and photosynthetic efficiency. We confirmed that the utilization of efficient light energy was obtained from 4 cm of diameter, 57.6% of S/V ratio, 62 ${\mu}$mol/㎡/s of light intensity.

Optimization of Algal Photobioreactors Using Flashing Lights

  • Park, Kyong-Hee;Lee, Choul-Gyun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.3
    • /
    • pp.186-190
    • /
    • 2000
  • It has been reported that flashing light enhances microalgal biomass productivity and overall photosynthetic efficiency. The algal growth kinetics and oxygen production rates under flashing light with various flashing frequencies (5Hz-37 kHz) were compared with those under equivalent continuous light in photobioreactors. A positive flashing light effect was observed with flashing frequencies over 1kHz. The oxygen production rate under conditions of flashing light was slightly higher than that under continuius ligth. The cells under the hight, particularly at higher cell concentrations. When 37kHz flashing light was applied to an LED-based photobioreactor, the concentration was higher than that obtained under continuous light by about 20%. Flashing light may be a reasonable solution to overcome mutual shading, particularly in high-density algal cultures.

  • PDF

Simple Monodimensional Model for Linear Growth Rate of Photosynthetic Microorganisms in Flat-Plate Photobioreactors

  • Kim, Nag-Jong;Suh, In-Soo;Hur, Byung-Ki;Lee, Choul-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.6
    • /
    • pp.962-971
    • /
    • 2002
  • The current study proposes a simple monodimensional model to estimate the linear growth rate of photosynthetic microorganisms in flat-plate photobioreactors (FPPBRs) during batch cultivation. As a model microorganism, Chlorella kessleri was cultivated photoautotrophically in FPPBRs using light-emitting diodes (LEDs) as the light sources to provide unidirectional irradiation in the photobioreactors. Various conditions were simulated by adjusting both the intensity of the light and the height of the culture. The validity of the proposed model was examined by comparing the linear growth rates measured with the predicted ones obtained from the proposed model. Accordingly, the value of $\frac{K\cdot\mu m}{\alpha\cdot L}log(I_0\cdot{I_s}^{\varepsilon 1)\cdot {I_c}^{-\varepsilon})$ was proposed as an approximate index for strategies to obtain the maximal lightn yield under light-limiting conditions for high-density algal cultures and as a control parameter to improve the photosynthetic productivity and efficiency.

Analysis of Cell Disruption in Microalgae Using Continuous Low Frequency Non-Focused Ultrasound (연속저주파를 이용한 미세조류 파쇄)

  • Choi, Jun-Hyuk;Kim, Gwang-Ho;Park, Jong-Rak;Jeong, Sang-Hwa
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.8
    • /
    • pp.33-41
    • /
    • 2021
  • Recently, many studies have been conducted on substituting fossil fuels with bio-refineries in existing industrial systems using biomass. Among the various bio-refineries, microalgae have received wide attention because it uses inorganic compounds to produce useful substances, which are extracted by a cell disruption process. Although numerous cell disruption methods exist, cell disruption efficiency has been studied by ultrasonic treatment. Ultrasound is a high-frequency (20 kHz or higher) sound wave and causes cell disruption by cavitation when passing through a solvent. In this study, we used the microalgal species Chlorella sp., which was cultured in a plate-type photobioreactor. The experiment was conducted using a continuous low-frequency processing device. The reduction of cells with time due to cell disruption was fitted using a logistic model, and optimum conditions for highly efficient cell disruption were determined by conducting experiments under multiple conditions.

The Characteristics of Carbon Dioxide Fixation by Chlorella sp. HA-1 in Semi-continuous Operation (반연속식 운전에서 Chlorella sp. HA-1의 이산화탄소 고정화 특성)

  • Lee, Jae-Young;Kang, Hyun-Ah;Yang, Ji-Won
    • KSBB Journal
    • /
    • v.14 no.6
    • /
    • pp.742-746
    • /
    • 1999
  • The microalgal, Chlorella sp. HA-1, had good $CO_2$ fixation efficiency compared to other algal strains at the same operating condition. In this study, Chorella sp. HA-1 showed similar tolerance both 10% and 20% $CO_2$ concentration. By optimization of the major operation variables such as pH, initial cell concentration, light intensity, the $CO_2$ fixation rate could be raised to a reasonably high value, 372 $gCO_2/m^2{\cdot}day$ in a 3 L internally illuminated photobioreactor. In order to maintain the $CO_2$ fixation rate for a long time, the method of semi-continuous operation was employed, in which dilution ratio was the controlling parameter. Starting with the dilution ratio of 0.5 with the increased increment of 0.1, the constant $CO_2$ fixation rate was obtained.

  • PDF