• Title/Summary/Keyword: High Dose Rate Ir-192

Search Result 41, Processing Time 0.043 seconds

Determination of Exposure Dose Rate and Isotropic Distributions of Substitute High Dose Rate Ir-192 Source for Co-60 Brachytherapy Source (원격강내조사용 Co-60 선원의 대체용 Ir-192 선원의 조사선량결정 및 선량 등방성조사)

  • 최태진;원철호;김옥배;김시운;김금배;조운갑;한현수;박경배
    • Progress in Medical Physics
    • /
    • v.9 no.1
    • /
    • pp.55-64
    • /
    • 1998
  • In recent, the demand of development of the high dose rate brachytherapy source increased for substitute for Co-60 source by iridium source, since the supplying Co-60 source is very depressed and the high dose rate brachytherapy sources are entirely imported from the abroad. This study investigated the exposure rates and isotropic dose distributions for the Ir-192 source produced from $\^$191/Ir(n,r)$\^$192/Ir by nuclear reactor in Korea Atomic Energy Research Institute. The activity of source was obtained an 1.012 Ci (the initial activity without encapsulation was 2,87Ci) by measurement with encapsuled stainless steel. The exposure rate of provided Ir-192 source was determined on 6.36 ${\pm}$ 0.147 Rm$^2$/h-GBq (2.350 ${\pm}$ 0.054 Rcm$^2$/mCi-hr) within ${\pm}$ 2.2% discrepancy with IC-10 ion chamber (0.14 cc) which was mounted on the acrylic jig to 5, 10 and 20 cm from the center of source. The calculated doses with 22 most significant spectrum lines were corrected with intrinsic efficiency of the germanium detector were compared to measured exposure dose rates within ${\pm}$3.8 % discrepancy. The authors confirmed the high dose rate Ir-192 source could be replaced the long decayed Co-60 source via investigation of the isotropic dose distributions in lateral, source axis and diagonal direction of source center are very closed to within 3% uncertainties. Especially, this exposure rate constant and isotropic dose distribution will be fundamental to build the high dose rate source and develop the computed therapy planning system.

  • PDF

Characteristics of Tissue Dose of High Dose Rate Ir-192 Source Substitution for Co-60 Brachytherapy Source (코발트-60 선원 대체용 고선량률 Ir-192 선원의 조직선량특성)

  • 최태진;이호준;김옥배
    • Progress in Medical Physics
    • /
    • v.9 no.4
    • /
    • pp.259-266
    • /
    • 1998
  • To achieve the 2D dose distribution around the designed high dose rate Ir-192 source substitution for Co-60 brachytherapy source, we determined the exposure rate constant and tissue attenuation factors as a large depth as a 20 cm from source center. The exposure rate constant is used for apparent activity in designed source with self-absorption and encapsulation steel wall. The tissue dose delivered from the 4401 segments of 2.5 mm in a diameter and 2.5 mm height of disk-type source layer. In the experiments, the tissue attenuation factors include the tissue attenuation and multiple scattering in a medium surrounding the source. The fitted the polynomial regression with 4th order for the tissue attenuation factors are very closed to the experimental measurement data within ${\pm}$1% discrepancy. The Meisberger's constant showed the large uncertainty in large distance from source. The exposure rate constant 4.69 Rcm$^2$/mCi-hr was currently used for determination of apparent activity of source and air kerma strength was obtained 0.973 for tissue absorbed dose from the energy spectrum of Ir-192 source. In our experiments with designed high dose rate brachytherapy source, the apparent activity of Ir-192 source was delivered from the 54.6 % of actual physical source activity through the self-absorption and encapsulation wall attenuations. This paper provides the 2-dimensional dose tabulation from unit apparent activity in a water medium for dose planning includes the multiple scattering, source anisotropy effect and geometric factors.

  • PDF

High Dose Rate Ir-192 Source Calibration Method with Newly Designed Calibration Jig (고선량 Ir-192선원 교정기의 제작 및 특성)

  • Yi, Byong-Yong;Choi, Eun-Kyung;Chang, Hye-Sook
    • Radiation Oncology Journal
    • /
    • v.7 no.2
    • /
    • pp.299-303
    • /
    • 1989
  • Authors have developed highly reproducible calibration method for the Micro-Selectron HDR Ir-192 system (Nucletron, Motherland). The new jig has a 10cm radius circular hole in the $30cm{\times}30cm{\times}0.2cm$ acrylic plate, and 5F flexible bronchial tubes are attached around the hole. The source moves along the circle in the tubes and the ionization chamber is placed verticaly at the center of the circular hole (center of the jig). Dose distribution near the center was derived theoretically, and measured with the film dosimetry system. Theoretical calculation and measurement show the error margin below $0.1\%$ for 1mm or 2mm position deviation. We have measured at 12 and 24 points of circle with 1, 6, 11 and 21 second dwell time of source in order to calculate the activity of the source. Measurements have been repeated daily for 50 days. The accuracy and the reproducibility are below $1\%$ error margin. The half life of the source from our measurement is estimated $73.4\pm0.4$ days.

  • PDF

Dose Computation Modeling for Frustum Typed Ir-192 of Ralstron Source (Ralstron 선원대체형 Ir-192 원추선원의 선량 전산화 모델링)

  • 최태진
    • Progress in Medical Physics
    • /
    • v.12 no.1
    • /
    • pp.19-29
    • /
    • 2001
  • In dose modeling, the shape of actual source and sealed capsule are important parameter to determine the physical dose computation. The author investigated the effect of filter of source self-absorption and sealed capsule to designed the high dose rate Ir-192 source for Ralstron(Japan) unit. The size of source designed to 1.5 mm $\Phi$ x 1.5mm length of actual source sealed with stainless steel which is 3.0mm $\Phi$ x 12.0mm length connected to driving cable. The dose attenuation was derived 66.3 % from 2655 segmented source at reference point of 10mm lateral distance of source. The output dose rate factor in tissue for designed source showed 0.0013511 cGy/mCi-sec in reference point at 1cm lateral distance of source center. The dose distribution at inferior of source showed the 52% of that of source tip region, however, the filtering effect was small as 4% at 45degrees of source axis. The dose attenuation within 20 degrees of source axis at near source-cable connector showed large filtering effect as 40% over, but the small effect was revealed isotropic dose distribution at large angle.

  • PDF

Dose modeling and its Application of Ir-192 for substitution of Ralstron Brachytherapy source (Ralstron 선원대체형 Iridium-192 선원의 선량모델링과 응용)

  • 김옥배;최태진;김진희;이호준;박정호;김성규;조운갑;한현수
    • Progress in Medical Physics
    • /
    • v.11 no.2
    • /
    • pp.131-139
    • /
    • 2000
  • We designed high dose rate Ir-192 source which was prepared for substitute the Co-60 source in Ralstron unit (Simatsu, Japan) which is supplied for cervical cancer treatment. The source dimension is 1.5 mm in a diameter and 1.5mm thickness of cylinder and encapsulated with 3 mm diameter of stainless steel(SUS316L) to substituted for the Co-60 source size. The Ir-192 source was prepared the dose model for tissue dose computation through the experimental determination of apparent activity and applied the empirical tissue correction factors extended to 20cm distance. The tissue dose model was applied the 4.69 R/cm-mCi-hr gamma constant and the ratio of energy absorption coefficient of water to that of air showed 1.112 include filteration of the self-absorptions. In this experiments, we prepared the dose computation software to clinical usefulness.

  • PDF

Comparison of Calibration Methods of $^{192}\textrm{Ir}$ Sources for High Dose Rate Brachytherapy (고선량률 근접조사치료용 이리듐-192 방사성동위원소의 교정방법 비교연구)

  • Huh Hyun Do;Park Sung Yong;Lee Rena J;Shin Dong Oh;Kwon Soo Il;Loh John J K;Choi Jinho
    • Progress in Medical Physics
    • /
    • v.15 no.4
    • /
    • pp.192-196
    • /
    • 2004
  • The activity of Ir-192 sources for high dose rate (HDR) Brachytherapy in Korea were measured by using the well-type chamber and using the calibration Jig with the Farmer-type ionization chamber to compare the manufacturer certificated source strength which is supplied with each new Ir-192 source. The activity of two different source models used in six hospitals were measured. The range of measured activities to the manufacturer's suggested ones was -2.40% to +3.31% for the calibration Jig and -3.12% to 0.00% for the well-type chamber system. The source strength values given by the manufacturer for the 6 sources were within ${\pm}5%$ for the two different measuring equipment. Our results demonstrate that well-type chamber as wall as Farmer-type chamber system are appropriate system for the routine source calibration procedures in HDR brachytherapy. Whenever a new source is installed to use in clinics, a source calibration should be carried out.

  • PDF

Evaluation of Factors Used in AAPM TG-43 Formalism Using Segmented Sources Integration Method and Monte Carlo Simulation: Implementation of microSelectron HDR Ir-192 Source (미소선원 적분법과 몬테칼로 방법을 이용한 AAPM TG-43 선량계산 인자 평가: microSelectron HDR Ir-192 선원에 대한 적용)

  • Ahn, Woo-Sang;Jang, Won-Woo;Park, Sung-Ho;Jung, Sang-Hoon;Cho, Woon-Kap;Kim, Young-Seok;Ahn, Seung-Do
    • Progress in Medical Physics
    • /
    • v.22 no.4
    • /
    • pp.190-197
    • /
    • 2011
  • Currently, the dose distribution calculation used by commercial treatment planning systems (TPSs) for high-dose rate (HDR) brachytherapy is derived from point and line source approximation method recommended by AAPM Task Group 43 (TG-43). However, the study of Monte Carlo (MC) simulation is required in order to assess the accuracy of dose calculation around three-dimensional Ir-192 source. In this study, geometry factor was calculated using segmented sources integration method by dividing microSelectron HDR Ir-192 source into smaller parts. The Monte Carlo code (MCNPX 2.5.0) was used to calculate the dose rate $\dot{D}(r,\theta)$ at a point ($r,\theta$) away from a HDR Ir-192 source in spherical water phantom with 30 cm diameter. Finally, anisotropy function and radial dose function were calculated from obtained results. The obtained geometry factor was compared with that calculated from line source approximation. Similarly, obtained anisotropy function and radial dose function were compared with those derived from MCPT results by Williamson. The geometry factor calculated from segmented sources integration method and line source approximation was within 0.2% for $r{\geq}0.5$ cm and 1.33% for r=0.1 cm, respectively. The relative-root mean square error (R-RMSE) of anisotropy function obtained by this study and Williamson was 2.33% for r=0.25 cm and within 1% for r>0.5 cm, respectively. The R-RMSE of radial dose function was 0.46% at radial distance from 0.1 to 14.0 cm. The geometry factor acquired from segmented sources integration method and line source approximation was in good agreement for $r{\geq}0.1$ cm. However, application of segmented sources integration method seems to be valid, since this method using three-dimensional Ir-192 source provides more realistic geometry factor. The anisotropy function and radial dose function estimated from MCNPX in this study and MCPT by Williamson are in good agreement within uncertainty of Monte Carlo codes except at radial distance of r=0.25 cm. It is expected that Monte Carlo code used in this study could be applied to other sources utilized for brachytherapy.

Real Time On-line Quality Assurance System for HDR Brachytherapy (고선량률 근접 방사선 치료를 위한 실시간 온-라인 정도 관리(QA) 시스템 개발)

  • Lee Su Jin;Lee Re Na;Yi Byang Yang;Lim Sang Waak;Choi Jin Ho
    • Progress in Medical Physics
    • /
    • v.15 no.3
    • /
    • pp.156-160
    • /
    • 2004
  • An essential quality assurance (QA) procedure in high dose rate (HDR) remote after-loading brachytherapy is that of the verification of the Ir-192 HDR source positioning accuracy. A number of methods using mechanical rulers or autoradiograph and video cameras have been reported to check the positional error of the Ir-192 source. In this study, the feasibility of a CMOS (Complementary Metal Oxide Semiconductor) PC camera, with a fluorescent screen, was investigated. The agreement between the planned and measured dwell position was better than 1 mm and dwell times better than 0.4 sec. Our results indicate that the CMOS PC camera system could be used as a QA tool for the on-line determination of the source position and dwell time.

  • PDF

Development of Dose Planning System for Brachytherapy with High Dose Rate Using Ir-192 Source (고선량률 강내조사선원을 이용한 근접조사선량계획전산화 개발)

  • Choi Tae Jin;Yei Ji Won;Kim Jin Hee;Kim OK;Lee Ho Joon;Han Hyun Soo
    • Radiation Oncology Journal
    • /
    • v.20 no.3
    • /
    • pp.283-293
    • /
    • 2002
  • Purpose : A PC based brachytherapy planning system was developed to display dose distributions on simulation images by 2D isodose curve including the dose profiles, dose-volume histogram and 30 dose distributions. Materials and Methods : Brachytherapy dose planning software was developed especially for the Ir-192 source, which had been developed by KAERI as a substitute for the Co-60 source. The dose computation was achieved by searching for a pre-computed dose matrix which was tabulated as a function of radial and axial distance from a source. In the computation process, the effects of the tissue scattering correction factor and anisotropic dose distributions were included. The computed dose distributions were displayed in 2D film image including the profile dose, 3D isodose curves with wire frame forms and dosevolume histogram. Results : The brachytherapy dose plan was initiated by obtaining source positions on the principal plane of the source axis. The dose distributions in tissue were computed on a $200\times200\;(mm^2)$ plane on which the source axis was located at the center of the plane. The point doses along the longitudinal axis of the source were $4.5\~9.0\%$ smaller than those on the radial axis of the plane, due to the anisotropy created by the cylindrical shape of the source. When compared to manual calculation, the point doses showed $1\~5\%$ discrepancies from the benchmarking plan. The 2D dose distributions of different planes were matched to the same administered isodose level in order to analyze the shape of the optimized dose level. The accumulated dose-volume histogram, displayed as a function of the percentage volume of administered minimum dose level, was used to guide the volume analysis. Conclusion : This study evaluated the developed computerized dose planning system of brachytherapy. The dose distribution was displayed on the coronal, sagittal and axial planes with the dose histogram. The accumulated DVH and 3D dose distributions provided by the developed system may be useful tools for dose analysis in comparison with orthogonal dose planning.