• 제목/요약/키워드: High DOF robot

검색결과 54건 처리시간 0.023초

잔여외란을 고려한 외란관측기 기반 고자유도 로봇의 강인 임피던스제어 (Robust Impedance Control of High-DOF Robot Based on Disturbance Observer Considering Residual Disturbance)

  • 김준혁;박승규;윤태성
    • 로봇학회논문지
    • /
    • 제16권1호
    • /
    • pp.72-78
    • /
    • 2021
  • This paper presents a robust impedance control of high-DOF robot based on disturbance observer(DOB). A novel DOB is derived by considering the residual disturbance caused by the difference between actual disturbance and disturbance decoupling input which utilizes the estimated disturbance. It focuses on the elimination of the residual disturbance and improvement of the control performance as well as the good estimation of disturbances. In the control of high-DOF robot, numerical dynamic model, which is conducted by a software based on dynamics, is utilized because the analytical model of high-DOF robot is difficult to be obtained. The simulation of high-DOF robot with numerical dynamic model is provided to verify the performance of the proposed controller.

확장 작업업영역을 갖는 고속 3자유도 하이브리드 로봇 개발 (Development of a Novel 3-DOF Hybrid Robot with Enlarged Workspace)

  • 정성훈;김기성;곽경민;김한성
    • 한국산업융합학회 논문집
    • /
    • 제23권5호
    • /
    • pp.875-880
    • /
    • 2020
  • In this paper, a novel 3-DOF hybrid robot with enlarged workspace is presented for high speed applications. The 3-DOF hybrid robot is made up of one linear actuator and 2-DOF planar parallel robot in series. The actuation consists of one ball-screw to make one linear motion and two rotary ball-screws to transmit rotational motion to 2-DOF parallel robot. The workspace can be enlarged according to ball-screw stroke and the moving inertia can be reduced due to locating all the heavy actuators at the fixed base. The inverse kinematics and workspace analyses are presented. The robot prototype and PC-based control system are developed.

2 자유도 작동기 모듈로 구성된 뱀 로봇 개발 (Development of a Snake Robot with 2-DOF Actuator Modules)

  • 신호철;정경민;권정주
    • 제어로봇시스템학회논문지
    • /
    • 제17권7호
    • /
    • pp.697-703
    • /
    • 2011
  • This article describes a snake robot with 2-DOF actuator modules. The 2-DOF actuator modules make the snake robot move in the 3D space so that the snake robot can cross obstacles and rough terrain. Each 2-DOF actuator module is designed to have high torque output and an embedded controller. A cross bracket connecting the modules is designed be able to support the weight of two actuator modules. The developed snake robot shows 3-D motions such as side winding, standing/monitoring, and can climb in a narrow pipe with high torque modules. The snake robot moves fast with passive wheels in a plane while crossing obstacles.

산업용 양팔로봇의 설계 및 제어 (Design and Control of Industrial Dual Arm Robot)

  • 박찬훈;박경택
    • 한국정밀공학회지
    • /
    • 제25권11호
    • /
    • pp.58-65
    • /
    • 2008
  • The study on dual arm robot manipulator which consists of two 6-DOF srms and one 2-DOF torso is introduced. This dual arm robot manipulator is designed for automation of assembly process in automotive manufacturing line. Each industrial 6-DOF arm can be used as a stand-alone type of industrial robot manipulator with 6-DOF and as a manipulator part of dual arm robot at the same lime. These structures help the robot maker willing to succeed in emerging market of dual arm robots have the high competitive power for the current industrial robot market and the emerging market of dual arm robot at the same time. The research results of the design concept, workspace analysis and the PC-based controller will be introduced.

ISMC와 외란관측기 기반 고자유도 로봇의 강인한 임피던스제어 (Robust Impedance Control of High-DOF Robot Based on ISMC and DOB)

  • 아브너 어시그네시온;박승규;김민찬
    • 한국정보통신학회논문지
    • /
    • 제21권1호
    • /
    • pp.173-179
    • /
    • 2017
  • 본 논문은 고자유도의 로봇에 대한 강인한 임피던스제어를 제안한다. 자유도가 높은 로봇에 대해서 동특성기반으로 제어하기 위해서는 해석적인 로봇의 동특성확보가 거의 불가능하기 때문에 수치해석적인 모델을 사용하게 된다. 이에 근본적으로 모델링오차가 존재하고 작업공간에서 임피던스제어기를 설계하는 경우에 많은 개수의 관절의 움직임의 영향을 받기 때문에 강인제어의 필요성이 더욱 절실하다. 이에 모델링 불확실성과 외란의 존재와 상관없이 원하는 임피던스를 유지하기 위해서는 공칭계통의 동특성에 슬라이딩모드의 강인성을 추가할 수 있는 적분슬라이딩모드제어를 도입하였고 입력외란의 영향을 제거할 수 있는 외란 관측기를 동시에 적용한 강인한 임피던스제어기를 제안하였다. 외란과 모델 불확실성이 존재함에도 불구하고 공칭계통을 기반으로 한 임피던스제어기의 특성을 그대로 유지할 수 있는 제어기가 설계되었다.

Adaptive RRT를 사용한 고 자유도 다물체 로봇 시스템의 효율적인 경로계획 (Efficient Path Planning of a High DOF Multibody Robotic System using Adaptive RRT)

  • 김동형;최윤성;염서군;라로평;이지영;한창수
    • 제어로봇시스템학회논문지
    • /
    • 제21권3호
    • /
    • pp.257-264
    • /
    • 2015
  • This paper proposes an adaptive RRT (Rapidly-exploring Random Tree) for path planning of high DOF multibody robotic system. For an efficient path planning in high-dimensional configuration space, the proposed algorithm adaptively selects the robot bodies depending on the complexity of path planning. Then, the RRT grows only using the DOFs corresponding with the selected bodies. Since the RRT is extended in the configuration space with adaptive dimensionality, the RRT can grow in the lower dimensional configuration space. Thus the adaptive RRT method executes a faster path planning and smaller DOF for a robot. We implement our algorithm for path planning of 19 DOF robot, AMIRO. The results from our simulations show that the adaptive RRT-based path planner is more efficient than the basic RRT-based path planner.

슬라이딩 모드를 가진 2-자유도 제어기를 이용한 유연한 로봇 조작기의 끝점 위치 제어 (Tip Position Control of Flexible Robot Manipulators Using 2-DOF Controller with Sliding Mode)

  • 신효필;이종광;강이석
    • 제어로봇시스템학회논문지
    • /
    • 제6권6호
    • /
    • pp.471-477
    • /
    • 2000
  • The position control accuracy of a robot arm is significantly deteriorated when a long arm robot is operated at a high speed. In this case, the robot arm must be modeled as a flexible structure, not a rigid one, and its control system should be designed with its elastic modes taken into account. In this paper, the tip position control scheme of a one-link flexible manipulator using 2-DOF controller with sliding mode is presented. The robot consists of a flexible arm manufactured with a thin aluminium plate, an AC servo motor with a harmonic drive for speed reduction, an optical encoder and a CCD camera as a vision sensor for on-line measuring the tip deflection of the flexible m. Simulation and experimental results of the flexible manipulator with a proposed controller are provided to show the effectiveness of the controller.

  • PDF

기계식 중력보상 기반의 가정용 5자유도 로봇 팔 (5 DOF Home Robot Arm based on Counterbalance Mechanism)

  • 박희창;안국현;민재경;송재복
    • 로봇학회논문지
    • /
    • 제15권1호
    • /
    • pp.48-54
    • /
    • 2020
  • Home robot arms require a payload of 2 kg to perform various household tasks; at the same time, they should be operated by low-capacity motors and low-cost speed reducers to ensure reasonable product cost. Furthermore, as robot arms on mobile platforms are battery-driven, their energy efficiency should be very high. To satisfy these requirements, we designed a lightweight counterbalance mechanism (CBM) based on a spring and a wire and developed a home robot arm with five degrees of freedom (DOF) based on this CBM. The CBM compensates for gravitational torques applied to the two pitch joints that are most affected by the robot's weight. The developed counterbalance robot adopts a belt-pulley based parallelogram mechanism for 2-DOF gravity compensation. Experiments using this robot demonstrate that the CBM allows the robot to meet the above-mentioned requirements, even with low-capacity motors and speed reducers.

센서를 이용한 소형 이족 보행 로봇의 개발에 관한 연구 (A Study On The Development Of A Miniature Biped Robot Using Sensor)

  • 정창윤;이종수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 D
    • /
    • pp.2433-2435
    • /
    • 2002
  • The purpose of this paper is to introduce a case study of developing a miniature biped robot. The biped robot has a total of twenty-one degrees of freedom(DOF) ; There are two legs which have six DOF each, two arms which have three DOF each and a waist which has three DOF. RC servo-motors were used as actuators. We have developed motor controller, sensor controller and ISA-interface card. Motor controller, PWM generator, can control eight motors Sensor controller is connected to eight FSR(Force Sensing Resistors). For high level controller communicate with low level controller, ISA-interface card has developed. For the stable walking, CMAC(Cerebellar Model Articulation Controller) neural network algorithm is applied to our system CMAC is robust at noise.

  • PDF

4자유도 고속 병렬 로봇의 해석 및 설계 (Analysis and Design of a Novel 4-DOF High-Speed Parallel Robot)

  • 김한성
    • 한국산업융합학회 논문집
    • /
    • 제19권4호
    • /
    • pp.206-215
    • /
    • 2016
  • Delta parallel robots are now widely used for high-speed applications. However, typical Delta robots, such as ABB Flexpicker suffer from rotating axis with passive prismatic joint subjected to critical speed and so requiring careful maintenance. In this paper, a novel 4-DOF high-speed parallel robot with four legs is presented, which consists of three legs with 90 degree arrangement for translational motions and one remaining leg with rack & pinion gears for rotational motion. The inverse kinematics, velocity, acceleration, statics, and inverse dynamics have been analyzed. From the workspace analysis and inverse dynamics simulation for 0.43 sec cycle time, the 4-axis parallel robot prototype with 12kg payload has been designed. In the future research, computed torque control methods will be developed for the prototype.