• Title/Summary/Keyword: High DOF robot

Search Result 54, Processing Time 0.206 seconds

Robust Impedance Control of High-DOF Robot Based on Disturbance Observer Considering Residual Disturbance (잔여외란을 고려한 외란관측기 기반 고자유도 로봇의 강인 임피던스제어)

  • Kim, Junhyuk;Park, Seungkyu;Yoon, Taesung
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.1
    • /
    • pp.72-78
    • /
    • 2021
  • This paper presents a robust impedance control of high-DOF robot based on disturbance observer(DOB). A novel DOB is derived by considering the residual disturbance caused by the difference between actual disturbance and disturbance decoupling input which utilizes the estimated disturbance. It focuses on the elimination of the residual disturbance and improvement of the control performance as well as the good estimation of disturbances. In the control of high-DOF robot, numerical dynamic model, which is conducted by a software based on dynamics, is utilized because the analytical model of high-DOF robot is difficult to be obtained. The simulation of high-DOF robot with numerical dynamic model is provided to verify the performance of the proposed controller.

Development of a Novel 3-DOF Hybrid Robot with Enlarged Workspace (확장 작업업영역을 갖는 고속 3자유도 하이브리드 로봇 개발)

  • Jeong, Sung Hun;Kim, Giseong;Gwak, Gyeong Min;Kim, Han Sung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.5
    • /
    • pp.875-880
    • /
    • 2020
  • In this paper, a novel 3-DOF hybrid robot with enlarged workspace is presented for high speed applications. The 3-DOF hybrid robot is made up of one linear actuator and 2-DOF planar parallel robot in series. The actuation consists of one ball-screw to make one linear motion and two rotary ball-screws to transmit rotational motion to 2-DOF parallel robot. The workspace can be enlarged according to ball-screw stroke and the moving inertia can be reduced due to locating all the heavy actuators at the fixed base. The inverse kinematics and workspace analyses are presented. The robot prototype and PC-based control system are developed.

Development of a Snake Robot with 2-DOF Actuator Modules (2 자유도 작동기 모듈로 구성된 뱀 로봇 개발)

  • Shin, Ho-Cheol;Jeong, Kyung-Min;Kwon, Jeong-Joo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.7
    • /
    • pp.697-703
    • /
    • 2011
  • This article describes a snake robot with 2-DOF actuator modules. The 2-DOF actuator modules make the snake robot move in the 3D space so that the snake robot can cross obstacles and rough terrain. Each 2-DOF actuator module is designed to have high torque output and an embedded controller. A cross bracket connecting the modules is designed be able to support the weight of two actuator modules. The developed snake robot shows 3-D motions such as side winding, standing/monitoring, and can climb in a narrow pipe with high torque modules. The snake robot moves fast with passive wheels in a plane while crossing obstacles.

Design and Control of Industrial Dual Arm Robot (산업용 양팔로봇의 설계 및 제어)

  • Park, Chan-Hun;Park, Kyoung-Taik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.11
    • /
    • pp.58-65
    • /
    • 2008
  • The study on dual arm robot manipulator which consists of two 6-DOF srms and one 2-DOF torso is introduced. This dual arm robot manipulator is designed for automation of assembly process in automotive manufacturing line. Each industrial 6-DOF arm can be used as a stand-alone type of industrial robot manipulator with 6-DOF and as a manipulator part of dual arm robot at the same lime. These structures help the robot maker willing to succeed in emerging market of dual arm robots have the high competitive power for the current industrial robot market and the emerging market of dual arm robot at the same time. The research results of the design concept, workspace analysis and the PC-based controller will be introduced.

Robust Impedance Control of High-DOF Robot Based on ISMC and DOB (ISMC와 외란관측기 기반 고자유도 로봇의 강인한 임피던스제어)

  • Asignacion, Abner Jr.;Park, Seung-kyu;Kim, Min-chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.1
    • /
    • pp.173-179
    • /
    • 2017
  • This paper proposes a robust impedance controller for high-DOF robots. The model-based control of a higher DOF robot uses a numerical dynamic model because the analytical dynamic model is difficult to be derived and this means that modeling error is inevitable. The impedance control in the task space is affected by joint motions and has more difficulties in the higher DOF robots. In addition, the disturbances must be decoupled in the control of high DOF robot. This paper proposes a robust impedance controller based on integral sliding mode control (ISMC) and disturbance observer(DOB) for high-DOF robot manipulator. The ISMC is used to improve the robustness of the impedance control and to preserve its nominal performance. DOB is also employed to cancel the effects of input disturbances and to reduce the maximum gain of the ISMC which eventually determines the input chattering size.

Efficient Path Planning of a High DOF Multibody Robotic System using Adaptive RRT (Adaptive RRT를 사용한 고 자유도 다물체 로봇 시스템의 효율적인 경로계획)

  • Kim, Dong-Hyung;Choi, Youn-Sung;Yan, Rui-Jun;Luo, Lu-Ping;Lee, Ji Yeong;Han, Chang-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.3
    • /
    • pp.257-264
    • /
    • 2015
  • This paper proposes an adaptive RRT (Rapidly-exploring Random Tree) for path planning of high DOF multibody robotic system. For an efficient path planning in high-dimensional configuration space, the proposed algorithm adaptively selects the robot bodies depending on the complexity of path planning. Then, the RRT grows only using the DOFs corresponding with the selected bodies. Since the RRT is extended in the configuration space with adaptive dimensionality, the RRT can grow in the lower dimensional configuration space. Thus the adaptive RRT method executes a faster path planning and smaller DOF for a robot. We implement our algorithm for path planning of 19 DOF robot, AMIRO. The results from our simulations show that the adaptive RRT-based path planner is more efficient than the basic RRT-based path planner.

Tip Position Control of Flexible Robot Manipulators Using 2-DOF Controller with Sliding Mode (슬라이딩 모드를 가진 2-자유도 제어기를 이용한 유연한 로봇 조작기의 끝점 위치 제어)

  • 신효필;이종광;강이석
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.6
    • /
    • pp.471-477
    • /
    • 2000
  • The position control accuracy of a robot arm is significantly deteriorated when a long arm robot is operated at a high speed. In this case, the robot arm must be modeled as a flexible structure, not a rigid one, and its control system should be designed with its elastic modes taken into account. In this paper, the tip position control scheme of a one-link flexible manipulator using 2-DOF controller with sliding mode is presented. The robot consists of a flexible arm manufactured with a thin aluminium plate, an AC servo motor with a harmonic drive for speed reduction, an optical encoder and a CCD camera as a vision sensor for on-line measuring the tip deflection of the flexible m. Simulation and experimental results of the flexible manipulator with a proposed controller are provided to show the effectiveness of the controller.

  • PDF

5 DOF Home Robot Arm based on Counterbalance Mechanism (기계식 중력보상 기반의 가정용 5자유도 로봇 팔)

  • Park, Hui Chang;Ahn, Kuk Hyun;Min, Jae Kyung;Song, Jae-Bok
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.1
    • /
    • pp.48-54
    • /
    • 2020
  • Home robot arms require a payload of 2 kg to perform various household tasks; at the same time, they should be operated by low-capacity motors and low-cost speed reducers to ensure reasonable product cost. Furthermore, as robot arms on mobile platforms are battery-driven, their energy efficiency should be very high. To satisfy these requirements, we designed a lightweight counterbalance mechanism (CBM) based on a spring and a wire and developed a home robot arm with five degrees of freedom (DOF) based on this CBM. The CBM compensates for gravitational torques applied to the two pitch joints that are most affected by the robot's weight. The developed counterbalance robot adopts a belt-pulley based parallelogram mechanism for 2-DOF gravity compensation. Experiments using this robot demonstrate that the CBM allows the robot to meet the above-mentioned requirements, even with low-capacity motors and speed reducers.

A Study On The Development Of A Miniature Biped Robot Using Sensor (센서를 이용한 소형 이족 보행 로봇의 개발에 관한 연구)

  • Jung, Chang-Youn;Lee, Jong-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2433-2435
    • /
    • 2002
  • The purpose of this paper is to introduce a case study of developing a miniature biped robot. The biped robot has a total of twenty-one degrees of freedom(DOF) ; There are two legs which have six DOF each, two arms which have three DOF each and a waist which has three DOF. RC servo-motors were used as actuators. We have developed motor controller, sensor controller and ISA-interface card. Motor controller, PWM generator, can control eight motors Sensor controller is connected to eight FSR(Force Sensing Resistors). For high level controller communicate with low level controller, ISA-interface card has developed. For the stable walking, CMAC(Cerebellar Model Articulation Controller) neural network algorithm is applied to our system CMAC is robust at noise.

  • PDF

Analysis and Design of a Novel 4-DOF High-Speed Parallel Robot (4자유도 고속 병렬 로봇의 해석 및 설계)

  • Kim, Han Sung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.4
    • /
    • pp.206-215
    • /
    • 2016
  • Delta parallel robots are now widely used for high-speed applications. However, typical Delta robots, such as ABB Flexpicker suffer from rotating axis with passive prismatic joint subjected to critical speed and so requiring careful maintenance. In this paper, a novel 4-DOF high-speed parallel robot with four legs is presented, which consists of three legs with 90 degree arrangement for translational motions and one remaining leg with rack & pinion gears for rotational motion. The inverse kinematics, velocity, acceleration, statics, and inverse dynamics have been analyzed. From the workspace analysis and inverse dynamics simulation for 0.43 sec cycle time, the 4-axis parallel robot prototype with 12kg payload has been designed. In the future research, computed torque control methods will be developed for the prototype.