• Title/Summary/Keyword: High Curie temperature materials

Search Result 56, Processing Time 0.022 seconds

Preparation and Magnetic Properties of MnBi Alloy and its Hybridization with NdFeB

  • Truong, Nguyen Xuan;Vuong, Nguyen Van
    • Journal of Magnetics
    • /
    • v.20 no.4
    • /
    • pp.336-341
    • /
    • 2015
  • MnBi alloys were fabricated by arc melting and annealing at 573 K. The heat treatment enhanced the content of the low-temperature phase (LTP) of MnBi up to 83 wt%. The Bi-excess assisted LTP MnBi alloys were used in the hybridization with the Nd-Fe-B commercial Magnequench ribbons to form the hybrid magnets (100-x)NdFeB/xMnBi, x = 20, 30, 40, 50, and 80 wt%. The as-milled powder mixtures of Nd-Fe-B and MnBi were aligned in a magnetic field of 18 kOe and warm-compacted to anisotropic and dense bulk magnets at 573 K by 2,000 psi for 10 min. The magnetic ordering of two hard phase components strengthened by the exchange coupling enhanced the Curie temperature ($T_c$) of the magnet in comparison to that of the powder mixture sample. The prepared hybrid magnets were highly anisotropic with the ratio $M_r/M_s$ > 0.8. The exchange coupling was high, and the coercivity $_iH_c$ of the magnets was ~11-13 kOe. The maximum value of the energy product $(BH)_{max}$ was 8.4 MGOe for the magnet with x = 30%. The preparation of MnBi alloys and hybrid magnets are discussed in details.

Dielectric Properties and Phase Transformation of Poled <001>-Oriented Pb(Mg1/3Nb2/3)O3-PbTiO3 Single Crystals (분극된 <001> 방위 Pb(Mg1/3Nb2/3)O3-PbTiO3 단결정의 유전 특성 및 상전이)

  • Lee, Eun-Gu;Lee, Jae-Gab
    • Korean Journal of Materials Research
    • /
    • v.22 no.7
    • /
    • pp.342-345
    • /
    • 2012
  • The dielectric properties and phase transformation of poled <001>-oriented $Pb(Mg_{1/3}Nb_{2/3})O_3-x%PbTiO_3$(PMN-x%PT) single crystals with compositions of x = 20, 30, and 35 mole% are investigated for orientations both parallel and perpendicular to the [001] poling direction. An electric-field-induced monoclinic phase was observed for the initial poled PMN-30PT and PMN-35PT samples by means of high-resolution synchrotron x-ray diffraction. The monoclinic phase appears from $-25^{\circ}C$ to $100^{\circ}C$ and from $-25^{\circ}C$ to $80^{\circ}C$ for the PMN-30PT and PMN-35PT samples, respectively. The dielectric constant (${\varepsilon}$)-temperature (T) characteristics above the Curie temperature were found to be described by the equation$(1/{\varepsilon}-1/{\varepsilon}_m)^{1/n}=(T-T_m)/C$, where ${\varepsilon}_m$ is the maximum dielectric constant and $T_m$ is the temperature giving ${\varepsilon}_m$, and n and C are constants that change with the composition. The value of n was found to be 1.82 and 1.38 for 20PT and 35PT, respectively. The results of mesh scans and the temperature-dependence of the dielectric constant demonstrate that the initial monoclinic phase changes to a single domain tetragonal phase and a to paraelectric cubic phase. In the ferroelectric tetragonal phase with a single domain state, the dielectric constant measured perpendicular to the poling direction was dramatically higher than that measured in the parallel direction. A large dielectric constant implies easier polarization rotation away from the polar axis. This enhancement is believed to be related to dielectric softening close to the morphotropic phase boundary.

Temperature Dependence of Magnetic Properties of YIG films Grown by Solid Phase Epitaxy (고상에피택시 YIG 박막의 온도에 따른 자기특성)

  • Jang, Pyug-Woo;Kim, Jong-Ryul
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.1
    • /
    • pp.25-29
    • /
    • 2005
  • Magnetic properties of YIG films grown by solid phase epitaxy (SPE) was measured as a function of temperature with focus on magneto-crystalline and perpendicular magnetic anisotropy. Perpendicular magnetic anisotropy was not induced in the SPE YIG films annealed at low temperature by relaxing residual stress through formation of dislocation. On the contrary the films annealed at high temperature showed perpendicular magnetic anisotropy which shows very low density of dislocation. Perpendicular magnetic anisotropy field decreased linearly up to a high temperature of $230^{\circ}C$ above which magneto-crystalline anisotropy disappeared. Coercivity also decreased linearly with temperature up 세 $230^{\circ}C$. Magneto-crystalline anisotropy of perpendicular anisotropy induced epitaxial (111) YIG films can be measured using $H_k=4K_1/3M_s$. Temperature behavior of initial susceptibility can be successfully explained by Hopkinson effects. Curie temperature of YIG films grown on GGG substrate with high paramagnetic susceptibility can be easily measured using the results.

Optical Properties of Two Different Metallic NaxCoO2:x=0.35 and 0.75

  • Hwang, J.;Yang, J.;Timusk T.;Chou, F.C
    • Journal of Magnetics
    • /
    • v.10 no.3
    • /
    • pp.128-132
    • /
    • 2005
  • We report optical ab-plane properties of the layered sodium cobaltate, $Na_xCoO_2$ for x = 0.35 and 0.75. Two samples show metallic behaviors according to dc resistivity transport. Overall temperature dependent optical conductivities of both samples are very similar to those of the high temperature superconducting underdoped cuprates. We found that the optical scattering rate of x = 0.75 sample, which is in a Curie-Weiss metallic phase, varies linearly (non-Fermi liquid) with frequency and temperature while that of x = 0.35 sample, which is in a paramagnetic metallic phase, varies quadratically (Fermi liquid) with frequency and temperature. Both x = 0.35 and 0.75 samples have an onset of scattering around $600\;cm^{-1}$ which can be attributed to the interaction of charge carriers with a bosonic collective mode in a system.

Improvement of the Resistivity in High Field for the New Piezoelectric Compositions in the Bi(NiaX1-a)O3-PbTiO3(X=Ti,Nb) System (Bi(NiaX1-a)O3-PbTiO3 계 압전 신조성(X-Ti,Nb)의 내전압 특성 향상)

  • Choi, Soon-Mok;Seo, Won-Seon
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.4
    • /
    • pp.220-225
    • /
    • 2008
  • Lead-free ferroelectric ceramics are widely researched today for industrial applications as sensors, actuators and transducers. Since $Pb(Zr_aTi_{1-a})O_3$-(PZT) has high Curie temperature($T_C$), high piezoelectric properties near its morphotropic phase boundary(MPB) composition and small temperature dependence electrical behavior, it has been used to commercial materials for wide temperature range and different application fields. According to the tolerance factor concept, since the $Bi^{3+}$ cation with 12-fold coordinate has a smaller ionic radius than 12-fold coordinate $Pb^{2+}$, most bismuth based perovskites possess a smaller tolerance factor. Therefore, MPBs with a higher $T_C$ may be expected in $Bi(Me^{3+})O_3PbTiO_3$ solid solutions. As in lead based perovskite systems, it is clear that we need to explore more materials in simple or complex bismuth based MPB systems. The objective of this study is to investigate the $Bi(Ni_{1_a}X_a)O_3-PbTiO_3(X=Ti^{4+},\;Nb^{5+})$ perovskite solid-solution. For improving the electronic conduction problem, the magnesium and manganese modified system was also studied.

Ferromagnetism of Chalcopyrite AlGaAs2:Mn Quaternary Alloys (4원 합금 AlGaAs2:Mn의 강자성)

  • Kang, Byung-Sub
    • Korean Journal of Materials Research
    • /
    • v.30 no.12
    • /
    • pp.666-671
    • /
    • 2020
  • The electronic structure and magnetic properties of chalcopyrite (CH) AlGaAs2 with dopant Mn at 3.125 and 6.25 % concentrations are investigated using first-principles calculations. The CH AlGaAs2 alloy is a p-type semiconductor with a small band-gap. The AlGaAs2:Mn shows that the ferromagnetic (FM) state is the most energetically favorable one. The Mn-doped AlGaAs2 exhibits FM and strong half-metallic ground states.The spin polarized Al(Ga,Mn)As2 state (Al-rich system) is more stable than the (Al,Mn)GaAs2 state (Ga-rich system), which has a magnetic moment of 3.82mB/Mn. The interaction between Mn-3d and As-4p states at the Fermi level dominates the other states.The states at the Fermi level are mainlyAs-4p electrons, which mediate strong interaction between the Mn-3d and As-4p states. It is noticeable that the FM ordering of dopant Mn with high magnetic moment originates from the As(4p)-Mn(3d)-As(4p) hybridization, which is attributed to the partially unfilled As-4pbands. The high FM moment of Mn is due to the double-exchange mechanism mediated by valence-band holes.

Crystal Structure and Polarization Properties of Ferroelectric Nd-Substituted $Bi_4Ti_3O_{12}$ Thin Films Prepared by MOCVD (강유전체 $(Bi,Nd)_4Ti_3O_{12}$ 박막의 결정 구조와 분극 특성)

  • Kang, Dong-Kyun;Park, Won-Tae;Kim, Byong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.135-136
    • /
    • 2006
  • Bismuth titanate ($Bi_4Ti_3O_{12}$, BIT) thin film has been studied intensively in the past decade due to its large remanent polarization, low crystallization temperature, and high Curie temperature. Substitution of various trivalent rare-earth cations (such as $La^{3+}$, $Nd^{3+}$, $Sm^{3+}$ and $Pr^{3+}$) in the BIT structure is known to improve its ferroelectric properties, such as remanent polarization and fatigue characteristics. Among them, neodymuim-substituted bismuth titanate, ((Bi, Nd)$_4Ti_3O_{12}$, BNT) has been receiving much attention due to its larger ferroelectricity. In this study, Ferroelectric $Bi_{3.3}Nd_{0.7}Ti_3O_{12}$ thin films were successfully fabricated by liquid delivery MOCVD process onto Pt(111)/Ti/$SiO_2$/Si(l00) substrates. Fabricated polycrystailine BNT thin films were found to be random orientations, which were confirmed by X-ray diffraction and scanning electron microscope analyses. The remanent polarization of these films increased with increase in annealing temperature. And the film also demonstrated fatigue-free behavior up to $10^{11}$ read/write switching cycles. These results indicate that the randomly oriented BNT thin film is a promising candidate among ferroelectric materials useful for lead-free nonvolatile ferroelectric random access memory applications.

  • PDF

Thermal stability, magnetic and magnetocaloric properties of Gd55Co35M10 (M = Si, Zr and Nb) melt-spun ribbons

  • Jiao, D.L.;Zhong, X.C.;Zhang, H.;Qiu, W.Q.;Liu, Z.W.;Ramanujan, R.V.
    • Current Applied Physics
    • /
    • v.18 no.12
    • /
    • pp.1523-1527
    • /
    • 2018
  • The thermal stability, magnetic and magnetocaloric properties of $Gd_{55}Co_{35}M_{10}$ (M = Si, Zr and Nb) melts-pun ribbons were studied. The relatively high reduced glass transition temperature ($T_{x1}/T_m$ > 0.60) and low melting point ($T_m$) resulted in excellent glass forming ability (GFA). The Curie temperatures ($T_C$) of melt-spun amorphous ribbons $Gd_{55}Co_{35}M_{10}$ for M = Si, Zr and Nb were 166, 148 and 173 K, respectively. For a magnetic field change of 2 T, the values of maximum magnetic entropy change $(-{\Delta}S_M)^{max}$ for $Gd_{55}Co_{35}Si_{10}$, $Gd_{55}Co_{35}Zr_{10}$ and $Gd_{55}Co_{35}Nb_{10}$ were found to be 2.86, 4.28 and $4.05J\;kg^{-1}K^{-1}$, while the refrigeration capacity (RC) values were 154, 274 and $174J\;kg^{-1}$, respectively. The $RC_{FWHM}$ values of amorphous alloys $Gd_{55}Co_{35}M_{10}$ (M = Si, Zr and Nb) are comparable to or larger than that of $LaFe_{11.6}Si_{1.4}$ crystalline alloy. Large values of $(-{\Delta}S_M)^{max}$ and RC along with good thermal stability make $Gd_{55}Co_{35}M_{10}$ (M = Si, Zr and Nb) amorphous alloys be potential materials for magnetic cooling operating in a wide temperature range from 150 to 175 K, e.g., as part of a gas liquefaction process.

Annealing Effect of Co/Pd Multilayers on Magnetic Properties During Interdifusion

  • Kim, Jai-Young;Jan E. Evetts
    • Journal of Magnetics
    • /
    • v.2 no.4
    • /
    • pp.147-156
    • /
    • 1997
  • An artificially modulated magnetic Co/Pd multilayer is one of the promising candidates for high density magneto-optic (MO) recording media, due to a large Kerr rotation angle in the wavelength of a blue laser beam. However, since multilayer structure, as well as amorphous structure, is a non-equilibrium state in terms of free energy and a MO recording technology is a kind of thermal recording which is conducted around Curie temperature (Tc) of the recording media, when the Co/Pd mulilayer is used for the MO recording media, changes in the magnetic properties are occurred as the amorphous structure do. Therefore, the assessment of the magnetic properties in the Co/Pd multilayer during interdiffusion is crucially important both for basic research and applications. As the parameter of the magnetic properties in this research, saturation magnetization and perpendicular magnetic anisotropy energy of the Co/Pd multilayer are measured in terms of Ar sputtering pressure and heat treatment temperature. Form the results of the research, we find out that the magnetic exchange energy between Co and Pd sublayers strongly affects the changes in the magnetic properties of the Co/Pd multilayers during the interdiffusion in ferromagnetic state. This discovery will provide the understanding of the magnetic exchange energy in the Co/Pd multilayer structure and suggest the operating temperature range for MO recording in the Co/Pd multilayer for the basic research and applications, respectively.

  • PDF

Effective Interdiffusion of Co/Pd multilayers

  • Kim, Jai-Young;Jan E. Evetts
    • Journal of Magnetics
    • /
    • v.2 no.3
    • /
    • pp.86-92
    • /
    • 1997
  • An artificially modulated magnetic Co/Pd multilayer is one of the promising candidates for high density magneto-optic (MO) recording media in the wavelength of a blue laser beam, due to large Kerr rotation angle. However, since the Co/Pd multilayer is a non-equilibrium state in terms of free energy and MO recording is a kind of thermal recording which is conducted around Curie temperature (Tc) of the recording media, the assessment of the thermal stability in the Co/Pd multilayer is crucially important both for basic research and applications. As the parameter of the thermal stability in this research, effective interdiffusion coefficients (Deff) perpendicular to the interface of the Co/Pd multilayers are measured in terms of Ar sputtering pressure and heat treatment temperature. From the results of the research, we find out that the magnetic exchange energy between Co and Pd sublayers strongly affects Deff of the Co/Pd multilayers. This discovery will provide the understanding of the magnetic exchange energy in the effective interdiffusion process of a magnetic multilayer structure and suggest the operating temperature range for MO recording in the Co/Pd multilayer for the basic research and applications, respectively.

  • PDF