• Title/Summary/Keyword: High Burning Rate

Search Result 131, Processing Time 0.028 seconds

Experimental Study on Evaporation and Combustion Characteristics of Fuel Droplet with Carbon Nano-Particles in RCM (급속압축장치에서 탄소 나노입자가 첨가된 연료 액적의 증발 및 연소 특성에 관한 실험적 연구)

  • Ahn, Hyeongjin;Jyoti, Botchu Vara Siva;Baek, Seung Wook
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.2
    • /
    • pp.7-14
    • /
    • 2016
  • Evaporation and combustion characteristics of fuel droplet with carbon nanoparticle were investigated in a rapid compression machine(RCM). RCM is an experimental equipment to simulate one compression stroke of reciprocating engine. Nitrogen was charged into reaction chamber for evaporation experiment, while oxygen was charged for combustion experiment. N990 carbon black and n-heptane were used to synthesize the carbon nanofluids. Surfactant, span80, was used to make synthesis easier. The droplet pictures were taken using a high speed camera with 500 frames per second. Thermocouple, of which tip is $50{\mu}m$, was used not only to measure transient bulk temperature, but also to suspend the droplet. Reaction chamber temperature was calculated from pressure data. The evaporation rate of nanofluids was improved compared to pure fuel. The ignition delay was promoted due to the nanoparticle, but the burning rate was decreased.

A Study on the Burning Characteristics of N-5 Propellant Embedded with Metal Wires (금속선을 삽입한 N-5복기 추진제의 연소 특성)

  • 유지창;박영규;김인철
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.1
    • /
    • pp.78-85
    • /
    • 1999
  • Burning characteristics of solid propellants embedded with four kinds of metal wires(Ag, Cu, Al, Ni-Cr wire) were studied with varying wire diameters(O.10.8 mm) lot N-5 propellant. It was found that the order of the burning rate increment ratio($r_w$/$r_sb$) was Ag wire > Cu wire > Al wire> Ni-Cr wire which was the same as the order of the magnitude of thermal diffusivity. The burning rate increment ratio($r_w$/$r_sb$) of N-5 propellant was less than that of composite Propellant because of the difference of adiabatic flame temperature and flame structure. When Ag, Cu and Al wire having high thermal diffusivity were embedded in N-5 propellant, the plateau and mesa characteristics of the double base propellant were disappeared, but not disappeared in the case of propellant embedded with Ni-Cr wire due to its poor thermal conductivity.

  • PDF

An Experimental Study on the Characteristics of Oxygen Combustion of Pulverized Coal and the $NO_x$ Formation using TGA/DSC and DTF (TGA/DSC, DTF를 이용한 미분탄의 산소 연소 및 $NO_x$ 배출 특성에 관한 실험적 연구)

  • Lee, Dae-Keun;Seo, Dong-Myung;Noh, Dong-Soon;Ko, Chang-Bog
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.54-59
    • /
    • 2007
  • In a view of capturing $CO_2$ as a greenhouse gas, an experimental study was conducted on the combustion characteristics of pulverized coal in $O_2$/$CO_2$ environment using TGA/DSC and DTF facilities. The effects of gas composition and concentration on the processes of devolatilization and char burning experienced by coal particles in combustion furnace and on the concentration of products such as $CO_2$, CO and $NO_x$ were observed using TGA/DSC and DTF respectively. As results, it were found that the rate of devolitilation is nearly independent on the $O_2$ concentration if it is over 20% but the char burning rate is a sensitive function of $O_2$ percent, and the two rates can be controlled by $O_2$ concentration in order to be similar with those of air combustion case. It was also found that high concentration $CO_2$ can be captured by oxy-coal combustion and high concentration of CO and low value of $NO_x$ are exhausted in that case. Additionally, NO reducing reaction by CO with char as catalyst was observed and a meaningful results were obtained.

  • PDF

The Tendency in Solid Propellant Technology for Missiles (유도탄용 고체 추진제 기술의 발전 추세)

  • Yim Yoo-Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.4
    • /
    • pp.112-120
    • /
    • 2005
  • The solid propellants have been most widely used for the military rockets or missiles all over the world and the efforts have been focused on the enhancement of propellant performance up to 1980s. lately in company with the distinguished development in the intelligence and communication technology, the more accurate guidance as well as maneuverability has been required in the military weapon system. To meet the requirements such as a high maneuverability, insensitiveness, or stealth of missile, the researches have been doing to develop the solid propellants which have a quality of ultra-fast burning rate, insensitiveness, low signature or the like.

Combustion Characteristics of Minco Sub-bituminous Coal at Oxy-Fuel Conditions (민코 아역청탄의 순산소 연소특성)

  • Kim, Jae-Kwan;Lee, Hyun-Dong;Jang, Seok-Won;Kim, Sung-Chul
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.2
    • /
    • pp.1-9
    • /
    • 2009
  • New way to effectively capture $CO_2$ in coal fired power plant is the combustion of coal using oxy-fuel technology. Combustion characteristics of Minco sub-bituminous coal at oxy-fuel conditions using TGA and drop tube furnace (DTF) were included activation energy about the char burnout, volatile yield and combustion efficiency of raw coal, the porosity of pyrolyzed char and fusion temperature of by-product ash. TGA result shows that the effect of $CO_2$ on combustion kinetics reduces activation energy by approximately 7 kJ/mol at air oxygen level(21% $O_2$) and decreases the burning time by approximately 16%. The results from DTF indicated similar combustion efficiency under $O_2/CO_2$ and $O_2/N_2$ atmospheres for equivalent $O_2$ concentration whereas high combustion efficiency under $O_2/N_2$ than $O_2/CO_2$ was obtained for high temperature of more than $1,100^{\circ}C$. Overall coal burning rate under $O_2/CO_2$ is decreased due to the lower rate of oxygen diffusion into coal surface through the $CO_2$ rich boundary layer. By-product ash produced under $O_2/CO_2$ and $O_2/N_2$ was similar IDT in irrelevant to $O_2$ concentration and atmospheres gas during the coal combustion.

  • PDF

Characteristics of Digital Infrared Thermal Imaging and Quantitative Evaluations for Patients with Burning Mouth Syndrome: a Cross Sectional Study (구강작열감증후군 환자의 적외선체열검사와 정량적 평가 특성 : 단면조사연구)

  • Ko, Whee-hyoung;Nam, Seong-uk;Ha, Na-yeon;Hwang, Mi-ni;Baek, So-young;Kim, Dong-yoon;Kim, Jin-sung
    • The Journal of Internal Korean Medicine
    • /
    • v.39 no.4
    • /
    • pp.699-707
    • /
    • 2018
  • Objectives: This study was designed to investigate characteristics of digital infrared thermal imaging (DITI) and quantitative evaluations in patients with burning mouth syndrome (BMS). Methods: We reviewed the clinical records of 38 patients with BMS who visited the Oral Diseases Clinic of Kyung Hee University Korean Medicine Hospital from March 1st, 2018 to June 30th, 2018. The subjects were evaluated with digital infrared thermal imaging (DITI) and for heart rate variability (HRV), unstimulated salivary flow rate (USFR), and the proportion of coated tongue. Results: Most patients showed higher temperatures on the central part of the tongue (T2) than on the middle of the forehead (T1). The patients tended to have a high Low frequency/High frequency (LF/HF) ratio. Statistically significant negative correlations were noted between the age of patients and the temperature of T1 and T2. Statistically significant negative correlations were also observed between the LF/HF ratio and 'T1-T2' values. Conclusions: This study suggests that DITI and HRV are useful for the validation of patients with BMS. Correlations between the result values suggest that sympathetic function acceleration is related to temperature distribution and, ultimately, to symptoms.

Investigation of axial-injection end-burning hybrid rocket motor regression

  • Saito, Yuji;Yokoi, Toshiki;Neumann, Lukas;Yasukochi, Hiroyuki;Soeda, Kentaro;Totani, Tsuyoshi;Wakita, Masashi;Nagata, Harunori
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.3
    • /
    • pp.281-296
    • /
    • 2017
  • The axial-injection end-burning hybrid rocket proposed twenty years ago by the authors recently recaptured the attention of researchers for its virtues such as no ${\zeta}$ (oxidizer to fuel mass ratio) shift during firing and good throttling characteristics. This paper is the first report verifying these virtues using a laboratory scale motor. There are several requirements for realizing this type of hybrid rocket: 1) high fuel filling rate for obtaining an optimal ${\zeta}$; 2) small port intervals for increasing port merging rate; 3) ports arrayed across the entire fuel section. Because these requirements could not be satisfied by common manufacturing methods, no previous researchers have conducted experiments with this kind of hybrid rocket. Recent advances in high accuracy 3D printing now allow for fuel to be produced that meets these three requirements. The fuel grains used in this study were produced by a high precision light polymerized 3D printer. Each grain consisted of an array of 0.3 mm diameter ports for a fuel filling rate of 98% .The authors conducted several firing tests with various oxidizer mass flow rates and chamber pressures, and analysed the results, including ${\zeta}$ history, using a new reconstruction technique. The results show that ${\zeta}$ remains almost constant throughout tests of varying oxidizer mass flow rates, and that regression rate in the axial direction is a nearly linear function of chamber pressure with a pressure exponent of 0.996.

Pool Combustion of Iso-Propanol Fuel including IPA and PCBs in different Type Vessels

  • An Suk-Heon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.102-108
    • /
    • 2006
  • On the refutation demanded for a control of various toxic substances. PCBs(poly chlorinated biphenyl) has a fatal poisonous matter in the ecosystem and the environmental pollution as it Is a kind of stable chemical substance. Especially, the gross Product of PCBs is estimated at about one million tonnage all over the world. However it is kept on storing in untreated state, then has a deterioration by the Prolonged storage and a risk of overflowing. Therefore, this research examined the fundamental characteristics of combustion and emission for the target of using the IPA (iso-propyl alcohol) solution as a part of PCBs control. IPA was filled to three kinds of Vessel, i.e. Vessel I, II, and III, and then was investigated as follows combustion shape, flame temperature. mass burning velocity, and PM(Particulate matter). A radial thermometer and a C-A thermocouple measured the flame temperature, and the optical extinction method by using He-Ne laser and the filter weight method used in the PM measurement. As a result, with an increasing of L/S ratio, the flame length become shorter and the burning velocity is more rapid, but the particulate matters is higher. It is supposed that the air flow rate is high on Vessel. and then the combustion is Promoted in the surface area of the upstream zone. The future works plan to investigate the characteristics with an using of the mixing of IPA and PCBs

Response of Radiation Driven Transient Burning of AP and HMX Using Flame Modeling

  • Lee, Changjin;Lee, Jae-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.8
    • /
    • pp.1181-1187
    • /
    • 2001
  • The radiation driven response function (R$\_$q/) for AP and HMX propellant was obtained and compared with experimental results by using a simple $\alpha$$\beta$γ flame model rather than with detailed chemistry. For an AP propellant, the profile of heat release was assumed by the experimental data. The calculated R$\_$q/ shows a frequency shift of the peak amplitude to the higher frequency and a decrease in the maximum amplitude as radiation increases. In addition, it was found the increase in the total flux could enhance the mean burning rate γ$\_$b/ while the phase differences between the radiation and resulting conduction could consequently reduce the fluctuating amplitude Δγ$\_$b/. Fortunately, this is the qualitative duplication of the behavior recently observed in the experiments of RDX propellants. For HMX, the response function R$\_$q/ has been calculated and showed a quite good agreement with the experimental data. Even though the fairly good agreement of R$\_$q/ with experimental ones, the unsteady behavior of HMX was not reproduced as the radiation input increased. This is due to lack of the material properties of HMX or the physical understanding of HMX burning at high pressure.

  • PDF