1 |
Q. Khan, An experimental study about the vaporization, ignition and burning of multicomponent fuel droplets at elevated pressures and temperatures, Ph.D Thesis Korea Advanced Institute of Science and Technology., (2010) 20-40
|
2 |
I. Javed, S.W. Baek, K. Waheed., Autoignition and combustion characteristics of heptane droplets with the addition of aluminium nanoparticles at elevated temperatures, Combustion and Flame, 162 (2015) pp.191-206
DOI
|
3 |
C. Zhang, B. Lei, Z. Li, Preparation and Magnetic Properties of Nanosize Fe-Co-Ni Alloy and Composite Particles by Water-in-Oil Microemulsions, Nanotechnology and Precision Engineering, 10 (2012) 36-45
|
4 |
W. Yu, H. Xie, A review on Nanofluids: Preparation, Stability Mechanisms, and Applications, Journal of nanomaterials, 2012 (2012) 1-17
|
5 |
Y.J. Hwang, J.K. Lee, Y.M. Jeong, S.I. Cheong, Y.C. Ahn, S.H. Kim, Production and dispersion stability of nanoparticles in nanofluids, Power Technology 186 (2008) 145-153
DOI
|
6 |
Kim HM, Evaporation and Combustion Characteristics of a Single Droplet According to the Operating Conditions of the RCM, Ms.D Thesis Korea Advanced Insituture of Science and Technology., (2012) 16-19
|
7 |
M. Shaker, E. Birgersson, A.S. Mujumdar, Extended Maxwell model for the thermal conductivity of nanofluids that accounts for nonlocal heat transfer, International Journal of Thermal Sciences 84 (2014) 260-266
DOI
|
8 |
M.S. Jeong, K.H. Lee, Combustion Characteristics of Single Droplet of Diesel with Bio-diesel for Their Mixing Ratios and Sizes, Journal of Energy Engineering, 18(2) (2009) 101-107
|
9 |
G. Xu, M. Ikegami, S. Honma, K. Ikeda, X. Ma, H. Nagaishi, D.L. Dietrich, P.M. Struk, Inverse influence of initial diameter on droplet burning rate in cold and hot ambiences: a thermal action of flame in balance with heat loss, Heat and Mass Transfer 46 (2003) 1155-1169
DOI
|
10 |
G.S. Jackson, C.T. Avedisian, J.C. Yang, Observations of soot during droplet combustion at low gravity: heptane and heptane/monochloro alkane mixtures, Int. J. Heat Mass Transfer 35 (1992) 2017-2033.
DOI
|
11 |
H. Ghassemi, S.W. Beak, Q. Khan, Experimental Study on Binary Droplet Combustion at elevated Pressures and Temperature, Combust. Sci. and Tech., 178 (2006) 1031-1053
DOI
|
12 |
A.T. Leonid, G.D. Ashok, H. Zachary, L. Michael, Potential explosion hazard of carbonaceous nanoparticles: Explosion parameters of selected materials, Journal of Hazardous Materials 295 (2015) 97-103
DOI
|
13 |
G. Yanan, L. Qiao, Optical Properties and Radiation-Enhanced Evaporation of Nanofluid Fuels Containing Carbon-Based Nanostructures, Energy Fuels, 26 (2012) 4224-4230
DOI
|
14 |
O.T. Lim, "An Investigation of a Stratified Charge Mixture's HCCI Combustion Processes Using a Rapid Compression Machine", Transactions of KSAE, 18(5), (2010) 1-8
|
15 |
D. Segawa, T. Kajikawa, T. Kadoka, Transcritical Phenomena of Autoignited Fuel Droplet at High Pressures under Microgravity, Microgravity sci. technol 17(3) 2005
|
16 |
T. Harada, H. Watanabe, Y. Suzuki, H. Kamata, Y. Matsushita, A numerical investigation of evaporation characteristics of a fuel droplet suspended from a thermocouple, International Journal of Heat and Mass and Transfer, 54 (2011) 649-655
DOI
|
17 |
H.M. Kim, S.W. Baek, A single n-heptane droplet behavior in rapid compression machine, International Journal of Heat and Mass Transfer 69 2014 247-255
DOI
|
18 |
H.M. Kim, S.W. Baek, Auto-Ignition Characteristics of Single n-Heptane Droplet in a Rapid Compression Machine, Combust. Sci. Technol., 186 (2014) 912-927,
DOI
|