• Title/Summary/Keyword: High Altitude Simulation Test

Search Result 45, Processing Time 0.029 seconds

Thrust Measurement System for High Altitude Simulation Test of the KSLV-I Kick Motor (KSLV-I 킥모터 개발을 위한 고공환경모사시험용 추력측정장치)

  • Lee, Jung-Ho;Cho, Sang-Yeon;Cho, Kie-Joo;Jung, Dong-Ho;Lee, Han-Ju;Oh, Seung-Hyub;Yoon, Kyung-Youl;Kim, Dong-Cheol
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.428-431
    • /
    • 2008
  • Korea Aerospace Research Institute(KARI) is achieving the Korea Space Launch Vehicle(KSLV) program according to National Space Technology Development Program. KSLV-I will be composed to liquid propellant(first stage) and solid propellant(second stage) propulsion system. The propulsion system of KSLV-I second stage is solid kick motor with high expansion ratio and its starting altitude is 300km high. In order to verify the performance of upper stage propulsion system designed to operate in the upper atmosphere, test facility which can simulate high altitude is needed. High Altitude Simulation Test Facility is composed to Thrust Measurement System, Control & Measurement system, Diffuser, SKID for cooling water supply to diffuser, CCTV, fire protection system and so on. This paper introduces TMS adapted to High Altitude Simulation Test for KSLV-I Kick Motor Development and results of hot firing test for its performance verification.

  • PDF

Study on Liquid Rocket Engine High Altitude Simulation Test (액체로켓엔진 고공환경 모사시험 연구)

  • Kim, Seung-Han;Moon, Yoon-Wan;Seol, Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.733-736
    • /
    • 2010
  • Korea Aerospace Research Institute (KARI) performed the preliminary design of liquid rocket engine high-altitude simulation firing test facility for the development and qualification of LRE for the 2nd stage of KSLV-II. The engine high-altitude simulation firing test facility, which are to be constructed at Goheung Space Center, will provide liquid oxygen and kerosene to enable the high-altitude simulation firing test of 2nd stage engine at ground test facility. The high-altitude environment is obtained using a supersonic diffuser operated by the self-ejecting jet from the liquid rocket engine.

  • PDF

High Altitude Test Facility for Small Scale Liquid Rocket Engine (소형 액체로켓엔진 고공환경 모사시험 설비)

  • Kim, Taewoan;Kim, Wanchan;Kim, Sunjin;Han, Yeoungmin;Ko, Youngsung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.3
    • /
    • pp.73-82
    • /
    • 2015
  • A high altitude test facility which includes supersonic diffuser and ejector has been developed to simulate atmospheric pressure at 25 km using a 500 N class small scale liquid rocket engine. Also high altitude simulation test for the small scale liquid rocket engine was performed to verify the facility's performance. The experimental facility consists of high altitude simulation device, propellants supply system and coolant supply system. Low pressure condition corresponding to about 27 km(0.021 bar) altitude atmosphere was successfully simulated and a small scale liquid rocket engine thrust level was confirmed at the simulated condition by the high altitude test facility verification test.

Starting Characteristics of Supersonic Exhaust Diffuser for Altitude Simulation Testing (고공환경 모사를 위한 초음속 디퓨저의 시동 특성 분석)

  • Kim, Yong-Wook;Lee, Jung-Ho;Kim, Sang-Heon;Oh, Seung-Hyub
    • Aerospace Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.117-121
    • /
    • 2012
  • Upper stage propulsion system designed for operation in the upper atmosphere should be tested under nozzle full flow conditions to verify its performance on the ground. KARI has carried out high altitude simulation test of KSLV-I kick motor using cylindrical supersonic exhaust diffuser. Also cold and hot flow test for the sub-scaled diffuser have been conducted to verify the design of real scale diffuser and to study its operating characteristics. This paper deals with the results obtained from these high altitude simulation tests.

Concept Design of High Altitude Simulation Test Facility (고공환경모사 시험설비 구축을 위한 개념설계)

  • Kim, Sang-Heon;Kim, Yong-Wook;Lee, Jung-Ho;Yu, Byung-Il;Cho, Sang-Yeon;Oh, Seung-Hyub
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.75-81
    • /
    • 2006
  • The propulsion system of KSLV-I second stage is engine with high expansion ratio and its starting altitude is high. To verify the performance of engine before the launch in the ground, high altitude test facility to simulate its operating condition is necessary. This material is about the concept design of high altitude simulation test facility for second stage engine. And it will be the basis for the construction of test facility and the test of engine.

  • PDF

High Altitude Simulation Test Facility for the KSLV-I Kick Motor Development (KSLV-I 킥모터 고공환경모사 시험설비 구축)

  • Kim, Yong-Wook
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.1
    • /
    • pp.37-43
    • /
    • 2008
  • In order to verify the performance of upper stage propulsion system designed to operate in the upper atmosphere, test facility which can simulate high altitude is needed. Cylindrical supersonic exhaust diffuser, which utilizes the momentum of exhaust gas, provides a simple means for providing a low pressure around the propulsion system. This paper describes sub-systems and specification of high altitude test facility developed for the test of KSLV-I kick motor. Performance of the facility has been successfully verified through five times of hot firing tests.

A Study on Starting Characteristics of Center Body Diffuser with Various The Location of Center Body for High Altitude Simulation (고고도 모사용 Center Body Diffuser에서의 Center Body의 위치에 따른 시동 특성에 관한 연구)

  • Park, Jin;Lee, Myeongwon;Lee, Seunghun;Kim, Hongjip
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1148-1152
    • /
    • 2017
  • To simulate a high altitude for rocket at sea level, the test facility should provide a sufficiently low pressure environment. Center Body Diffuser(CBD) is those applied for high altitude simulation test facility. To elucidate the flow characteristics of center body diffuser with various the center body location, numerical analyses using ANSYS FLUENT were performed. The result of this study is deemed to be valuable as a data base for the operation of the Center Body Diffuser.

  • PDF

Subscale high altitude simulation test using solid propellant gas generator (고체추진제 가스발생기를 이용한 축소형 고공환경모사 시험)

  • Kim, Yong-Wook;Lee, Jung-Ho;Yu, Byung-Il;Cho, Sang-Yeon;Oh, Seung-Hyub
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.136-141
    • /
    • 2008
  • Cylindrical supersonic exhaust diffuser, which utilizes the momentum of high temperature gas exhausted from nozzle, provides simple methods for obtaining stable and low pressure around the propulsion system. Hot zone on which exhausted gas from nozzle exit impinges directly should be cooled to avoid melting of diffuser. This paper describes method and result of subscale high altitude simulation test with water cooling. Subscale gas generator with solid propellant was used for hot gas source and tap water for coolant.

  • PDF

High-Altitude Environment Simulation of Space Launch Vehicle Including a Thruster Module (추력기 모듈을 포함한 우주발사체 고공환경모사)

  • Lee, Sungmin;Oh, Bum-Seok;Kim, YoungJun;Park, Gisu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.10
    • /
    • pp.791-797
    • /
    • 2018
  • In this work, the high-altitude environment simulation study was carried out at an altitude of 65 km exceeding Mach number of 6 after the launch of Korean Space Launch Vehicle using a shock tunnel. To minimize the flow disturbance due to the strut support of test model as much as possible, a few different types of strut configurations were considered. Using the configuration with minimum disturbance, the high-altitude environment simulation experiment including a propulsion system with a single-plume, was conducted. From the thruster test through flow visualization, not only a shockwave pattern, but a general flow-field pattern from the mutual interaction between the exhaust plume and the free-stream undisturbed flow, was experimentally observed. The comparison with the computation fluid dynamic(CFD) results, showed a good agreement in the forebody whereas in the afterbody and the nozzle the disagreement was about ${\pm}7%$ due to unwanted shockwave formation emanated from the nozzle-exit.

Preliminary Design of High Altitude Test Facility for Kick Motor of KSLV-I Development (KSLV-I 킥모터용 고공환경모사 시험설비 구축을 위한 기본설계)

  • Kim, Yong-Wook;Lee, Jung-Ho;Yu, Byung-Il;Kim, Sang-Heon;Oh, Seung-Hyub
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.180-187
    • /
    • 2007
  • Korea Aerospace Research Institute(KARI) is developing Korea Space Launch Vehicle(KSLV). KSLV-I is composed of liquid propulsion system for the first stage and apogee kick motor as the second stage. Kick motor has a high expansion ratio nozzle and its starting altitude is 300km high. To verify the performance of kick motor, high altitude test facility (HATF) to simulate its operating condition is necessary. This paper contains preliminary design for construction of HATF.

  • PDF