• 제목/요약/키워드: High Accuracy Motion Control

검색결과 119건 처리시간 0.163초

Relationship between motion speed and working accuracy of industrial articulated robot arms

  • Goto, Satoru;Nakamura, Masatoshi;Kyura, Nobuhiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국제학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.230-233
    • /
    • 1993
  • This paper described a relationship between motion speed and working accuracy of industrial articulated robot arms. Working accuracy of the robot arm deteriorates at high speed operation caused by a nonlinear transformation of the kinematics and the time delay of the robot arm dynamic. The deterioration of the following trajectory was expressed as a linear function of the squares of the robot arm motion speed, depending upon a posture of the robot arm and division interval of the objective trajectory.

  • PDF

Structural Analysis and Design of Robust Motion Controllers for High-Accuracy Positioning Systems

  • Kim, Bong-Keun;Chung, Wan-Kyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.467-467
    • /
    • 2000
  • In this paper, a structural design method of robust motion controllers for high-accuracy positioning systems, which makes it possible to predict the performance of the whole closed-loop system, is proposed. First, a stabilizing control input is designed based on robust internal-loop compensate.(RTC) for the system in the presence of uncertainty and disturbance. Next, using the structural characteristics of the RIC, disturbance attenuation properties and the performance of the closed-loop system determined by the variation of controller gains are analyzed. Through this analysis, in some specific applications, it is shown that if the control gain of RIC is increased by N times, the magnitude of error is reduced to its 1/N. Finally, the proposed method is verified through experiments using a high-accuracy positioning system used in the semiconductor chip mounting devices.

  • PDF

선형 동기 모터의 정밀모션 제어 (High-accuracy Motion Control of Linear Synchronous Motor)

  • 정승현;성준엽;박정일
    • 한국정밀공학회지
    • /
    • 제22권6호
    • /
    • pp.76-82
    • /
    • 2005
  • In this paper, the pole placement controller based on the Robust Internal-loop Compensator (RIC) structure, which has inherent structural equivalence to disturbance observer, is proposed to control a linear positioning system. This controller has the advantage to easily select controller gains by using pole placement without loss of that of original RIC structure. The principal is to construct the pole placement controller for a nominal internal model instead of unknown real plant. Using linear motion experiment showed the effectiveness of the proposed controller.

사실적인 컴퓨터 애니메이션 구현을 위한 증분형 영상 기반 운동 렌더링 기법 (Incremental Image-Based Motion Rendering Technique for Implementation of Realistic Computer Animation)

  • 한영모
    • 정보처리학회논문지B
    • /
    • 제15B권2호
    • /
    • pp.103-112
    • /
    • 2008
  • 사실적인 컴퓨터 애니메이션 제작 시 종종 모션 캡쳐 기술이 사용된다. 모션 캡쳐 기술은 대상체의 운동을 측정해서 모델링한 운동 렌더링 결과를 그래픽스로 표현한다. 본 논문에서는 카메라를 사용해서 얻어진 2차원 영상 정보로부터 대상체의 3차원 운동을 측정하여 모델링하는 영상 기반 운동 렌더링 문제를 다룬다. 기존의 영상 기반 운동 렌더링 알고리즘은 계산량이 너무 많거나 정확도가 떨어지는 등의 단점이 있었다. 첫 번 째 단점은 장편 애니메이션 제작시 제작 시간이 너무 길어서 문제가 되고, 두 번 째 단점은 사실적인 애니메이션 구현시 사실감이 저하되는 문제를 야기 시킨다. 이와 같은 기존 방식의 단점을 보완하기 위하여 본 논문에서는 계산량이 적고 정확도가 높은 영상 기반 운동 렌더링 알고리즘을 제안한다. 본 논문에서 제안한 방식에서는 계산량이 적은 증분형 운동렌더링 알고리즘을 최적제어 이론의 시각에서 분석하여 정확도를 향상시키도록 개조한다. 본 방식을 광학식 모션 캡쳐 기술에 적용할 경우 표시자(marker)의 부착 없이도 모션 캡쳐가 가능하다는 부가적 인 장점 또한 얻을 수 있다.

로봇의 관절외란해석을 이용한 직선궤적 위치결정 (Joint disturbance torque analysis for robots and its application in straight line path placement)

  • 최명환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1824-1827
    • /
    • 1997
  • Majority of industrial robots are controlled by a simple joint servo control of joint actuators. In this type of control, the performance of control is influenced greatly by the joint interaction torques including Coriolis and centrifugal forces, which act as disturbance torques to the control system. As the speed of the robot increases, the effect of this disturbance torque increases, and makes the high speed-high precision control more difficult to achieve. In this paper, the joint disturbance torque of robots is analyzed. The joint disturbance torque is defined using the coefficients of dynamic equation of motion, and for the case of a 2DOF planar robot, the conditions for the maximum joint disturbance torques are identified, and the effect of link parameters and joint variables on the joint disturbance torque are examined. Then, a solutioin to the optimal path placement problem is proposed that minimizes the joint disturbance torque are examined. then, a solution to the optimal path placement problem is proposed that minimizes the joint disturbance torque during a straight line motion. the proposed method is illustrated using computer simulation. the proposed solution method cna be applied to the class of robots that are controlled by independent joint sevo control, which includes the vast majority of industrial robots. By minimizing the joint disturbacne torque during the motion, the simple joint servo controlled robot can move with improved path tracking accuracy at high speed.

  • PDF

Servo Drives State of the Art in Industrial Applications - A Survey

  • Kennel, R.;Kobs, G.;Weber, R.
    • Journal of Power Electronics
    • /
    • 제2권1호
    • /
    • pp.25-31
    • /
    • 2002
  • Servo drives with microcomputer control provide the possibility of using modern and sophisticated control algorithms. As an additional feature it is possible to implement parallel and/or redundant software and hardware structures to realise safe motion or similar security functions. Unfortunately microcomputer control also has some impact on the behaviour of servo drives. Control algorithm, cycle time, sensors and interface have to be perfectly synchronised. Special control schemes are necessary on the line side (power supply) to meet the actual requirements concerning EMC. This contribution presents experiences and results obtained from a modern digital drive system pointing out the influences of low and high accuracy position sensors and the interdependencies mentioned above.

A Robust Input Modification Approach for High Tracking Control Performance of Flexible Joint Robot

  • Park, Min-Kyu;Lee, Sang-Hun;Hur, Jong-Sung;Yim, Jong-Guk;Park, Jong-Hyeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1249-1253
    • /
    • 2004
  • A robust input modification approach to the control of flexible joint robot is presented. In our previous study, we developed an observer based state feedback control for the suppression of residual vibration of a robot. The control was very effective in suppressing the inherent vibration of a flexible joint robot. However it did not meet high performance requirements under high speed motion and model uncertainties. As a solution of the problem, we present an input modification method with robustness against parametric uncertainties. The main idea of the proposed input modification method is to generate a modified reference position command for fast and accurate motion of the robot. Using this proposed method we can reduce the servo delay and settling time by about 60% and substantially improve the path accuracy.

  • PDF

Dither를 가지는 링레이저 자이로 항법시스템의 복합 주파수 원추운동 오차 해석 (Error Analysis of the Multi-Frequency Coning Motion with Dithered Ring Laser Gyro INS)

  • 김광진;이태규
    • 제어로봇시스템학회논문지
    • /
    • 제7권8호
    • /
    • pp.697-702
    • /
    • 2001
  • The ring laser gyro(RLG) has been used extensively in strapdown inertial navigation system(SDINS) because of the apparent of having wide dynamic range, digital output and high accuracy. The dithered RLG system has dynamic motion at sensor level, caused by the dithering motion to overcome the lock-in threshold. In this case, an attitude error is produced by not only the true coning of the vehicle motion but also the pseudo coning of the sensor motion. This paper describes the definition of the multi-frequency coning motion and its noncommutativity error to reject the pseudo coning error produced by the sensor motion such as the dithered RLG. The simulation results are presented to minimize the multi-frequency coning error.

  • PDF

유연한 XY 위치결정 시스템을 위한 강인 동작 제어기 설계 (Robust Motion Controller Design for Flexible XY Positioning Systems)

  • 김봉근;박상덕;정완균;염영일
    • 제어로봇시스템학회논문지
    • /
    • 제9권1호
    • /
    • pp.82-89
    • /
    • 2003
  • A robust motion control method is proposed fur the point-to-point position control of a XY positioning system which consists of a base cart, elastic ben and moving mass. The horizontal motion controller consists of the feedforward controller to suppress the single mode vibration of the elastic beam and the feedback controller to get the high-accuracy positioning performance of the base cart. Input preshaping vibration suppression method based on system modeling with analytic frequency equation is proposed and integrated into the robust internal-loop compensator(RIC) to increase the robustness of the whole closed-loop system The vertical motion controller is proposed based on the dual RIC structure. Through experiments, it is shown that the proposed method can stabilize the system and suppress the vibration in the presence of uncertainties and disturbances.