• Title/Summary/Keyword: High Accuracy

Search Result 8,633, Processing Time 0.048 seconds

Design Method of the High Accuracy Thrust Stand (고 정확도 추력 계측 시험대 설계기법)

  • Lee Kyu-Joon;Park Ik-Soo;Choi Yong-Kyu
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.1
    • /
    • pp.9-17
    • /
    • 2006
  • The thrust measurement systems(TMS) with high accuracy are required in rockery, according to develop the high precise guided space vehicle. For obtaining high accuracy, the basic concepts and the necessary technology which have been acquired through many experiences of TMS are summarized, and the design methodology for practical use in ADD is presented. In this paper, the parameters against accuracy of TMS are discussed, and the improving methods are suggested. Through this application example, the design methodology of ADD is shown its superiority in TMS.

Study on the High-Speed Machining Using High Speed Tooling System in Machining Center (범용 머시닝센터에서 주축증속기를 이용한 고속절삭에 관한 연구 -주축의 회전정도(Run-Out)가 가공특성에 미치는 영향 -)

  • 김경균;이용철;이득우;김정석;황경현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.41-45
    • /
    • 1996
  • In order to realize the high-speed machining, the relative technologies for high speed machining tool and high speed machining are required now, The machining accuracy is influenced on the disturbance by the synchronized working conditions(cutting force, spindle Run-out, thermal deformation etc.) In this paper, the effect of spindle Run-out for the high speed machining is investigated. The results show that the spindle Run-out has a great influence on the machining accuracy in high speed machining.

  • PDF

A Study on the Improvement of Machining Accuracy in High Speed Machining of STD11 (STD11 금형강의 고속가공에서 가공정밀도 향상에 관한 연구)

  • 이춘만;최치혁;정원지;정종윤;고태조;김태형
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.329-334
    • /
    • 2002
  • High-speed machining is one of the most effective technology to improve productivity. Because of the high speed and high feed rate, high-speed machining can give great advantages for the machining of dies and molds. This paper describes on the improvement of machining accuracy in high-speed machining. Depth of cut, feed rate, spindle revolution and cutting force are control factors. The effect of the control factors on machining accuracy is discussed for the results of surface roughness and machining error in Z-direction for the high speed machining of STD11.

  • PDF

Development of High Speed Machining Technology(2) (고속절삭가공기술개발(2))

  • 이춘만;류승표;정원지;정종윤;고태조
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.106-112
    • /
    • 2003
  • High-speed machining is one of the most effective technology to improve productivity. Because of the high speed and high feed rate, high-speed machining can give great advantages for the machining of dies and molds. This paper describes on the improvement of machining accuracy in high-speed machining and an estimate about machining accuracy of high-speed machining.

  • PDF

A Study on the Improvement of Machining Accuracy in High Speed Machining using Design of Experiments (실험계획법을 이용한 고속가공의 가공정밀도 향상에 관한 연구)

  • 권병두;고태조;정종윤;정원지;이춘만
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.393-396
    • /
    • 1997
  • High-speed machining is one of the most effective technologies to improve productivity. Because of the high speed and high feed rate, high-speed machining can give great advantages for the machining of dies and molds. This paper describes on the improvement of machining accuracy in high-speed machining. Depth of cut and feed rate are control factors. The effect of the control factors on machining accuracy is investigated using two-way factorial design.

  • PDF

A Study on the Improvement of Machining Accuracy in High Speed Machining using Design of Experiments (실험계획법을 이용한 고속가공의 가공정밀도 향상에 관한 연구)

  • Lee, Chun-Man;Gwon, Byeong-Du;Go, Tae-Jo;Jeong, Jong-Yun;Jeong, Won-Ji
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.7
    • /
    • pp.88-96
    • /
    • 2002
  • High-speed machining is one of the most effective technologies to improve productivity. Because of the high speed and high feed rate, high-speed machining can give great advantages for the machining of dies and molds. This paper describes on the improvement of machining accuracy in high-speed machining. Depth of cut, feed rate and spindle revolution are control factors. The effect of the control factors on machining accuracy is investigated using two-way factorial design.

THE ADAPTIVE WAVELET FOR HIGH ORDER ACCURATE AND EFFICIENT COMPUTATIONAL FLUID DYNAMICS (고차정확도 및 효율적인 전산유체해석을 위한 Adaptive Wavelet)

  • Lee, Do-Hyung
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.261-265
    • /
    • 2011
  • An adaptive wavelet transformation method with high order accuracy is proposed to allow efficient and accurate flow computations. While maintaining the original numerical accuracy of a conventional solver, the scheme offers efficient numerical procedure by using only adapted dataset. The main algorithm includes 3rd order wavelet decomposition and thresholding procedure. After the wavelet transformation, 3rd order of spatial and temporal accurate high order interpolation schemes are executed only at the points of the adapted dataset. For the other points, high order of interpolation method is utilized for residual evaluation. This high order interpolation scheme with high order adaptive wavelet transformation was applied to unsteady Euler flow computations. Through these processes, both computational efficiency and numerical accuracy are validated even in case of high order accurate unsteady flow computations.

  • PDF

Analysis of overlap ratio for registration accuracy improvement of 3D point cloud data at construction sites (건설현장 3차원 점군 데이터 정합 정확성 향상을 위한 중첩비율 분석)

  • Park, Su-Yeul;Kim, Seok
    • Journal of KIBIM
    • /
    • v.11 no.4
    • /
    • pp.1-9
    • /
    • 2021
  • Comparing to general scanning data, the 3D digital map for large construction sites and complex buildings consists of millions of points. The large construction site needs to be scanned multiple times by drone photogrammetry or terrestrial laser scanner (TLS) survey. The scanned point cloud data are required to be registrated with high resolution and high point density. Unlike the registration of 2D data, the matrix of translation and rotation are used for registration of 3D point cloud data. Archiving high accuracy with 3D point cloud data is not easy due to 3D Cartesian coordinate system. Therefore, in this study, iterative closest point (ICP) registration method for improve accuracy of 3D digital map was employed by different overlap ratio on 3D digital maps. This study conducted the accuracy test using different overlap ratios of two digital maps from 10% to 100%. The results of the accuracy test presented the optimal overlap ratios for an ICP registration method on digital maps.

Quantitative Precipitation Estimation using High Density Rain Gauge Network in Seoul Area (고밀도 지상강우관측망을 활용한 서울지역 정량적 실황강우장 산정)

  • Yoon, Seong-sim;Lee, Byongju;Choi, Youngjean
    • Atmosphere
    • /
    • v.25 no.2
    • /
    • pp.283-294
    • /
    • 2015
  • For urban flash flood simulation, we need the higher resolution radar rainfall than radar rainfall of KMA, which has 10 min time and 1km spatial resolution, because the area of subbasins is almost below $1km^2$. Moreover, we have to secure the high quantitative accuracy for considering the urban hydrological model that is sensitive to rainfall input. In this study, we developed the quantitative precipitation estimation (QPE), which has 250 m spatial resolution and high accuracy using KMA AWS and SK Planet stations with Mt. Gwangdeok radar data in Seoul area. As the results, the rainfall field using KMA AWS (QPE1) is showed high smoothing effect and the rainfall field using Mt. Gwangdeok radar is lower estimated than other rainfall fields. The rainfall field using KMA AWS and SK Planet (QPE2) and conditional merged rainfall field (QPE4) has high quantitative accuracy. In addition, they have small smoothed area and well displayed the spatial variation of rainfall distribution. In particular, the quantitative accuracy of QPE4 is slightly less than QPE2, but it has been simulated well the non-homogeneity of the spatial distribution of rainfall.