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CONDITION FOR SMOOTHNESS OF
HIGH ACCURACY WAVELET BASIS

SOON-GEOL KwON

ABSTRACT. High accuracy wavelet basis 3 is constructed in [2]. We
derive a condition for smoothness of the basis function 3(z).

1. Introduction

Let ¢ be the scaling function of an orthogonal multiresolution approx-
imation ([1]). The wavelet approximation of a function in a Hilbert space
‘H onto the subspace V; at the resolution A = 27 is the projection

(1) Puf(z) = > (f, 6585 (2),
j=—-0

where Vj is spanned by

(2) Pi(z) = 2"°¢(2*x - j), forjeZ.

The accuracy of the wavelet approximation at the resolution h = 2%
is

1£(z) = Pef(@)ll = O(RM),

where M is the vanishing moments of the wavelet ¢ ([4]). In some ap-
plications, such as wavelet-Galerkin methods, we may know the wavelet
coefficients of a solution function to high accuracy.

We would like to improve the accuracy of the approximation by con-
structing new basis functions while keeping the wavelet coefficients. For
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any given scaling function ¢ and accuracy n, we construct basis function
B with compact support so that for smooth function f,

(3) If(z) - Zf’“ﬂ’“ (z)]] = O(r™),

j=—00
where (3} is defined as in (2) and
fF=A{f,¢).
The basis function [ recovers point values of f for comparable accuracy.
In this paper, we derive a condition for smoothness of the basis function

B.

The continuous moments of ¢ is defined by

Miz/ z'p(z) dz

We define the shifted continuous moments of ¢ by

o0 [e.¢]

@) Miy= [ woa-ids= [ (o o) d.

—0o0 —00

Let C?(R) be the p times continuously differentiable functions on R.

2. Construction of High Accuracy Wavelet Basis

In this section we review construction of high accuracy wavelet basis
([2]). Assume that for some function f and some orthogonal wavelet basis
we know the projection Py f onto V;

(5) Pef(z Z i)

How well can we recover the point values of f from this?
Assume that wavelet 1) has M vanishing moments. If f € C™| then for
any point x

(@) = Puf ()|l = O(RM),
where h.= 27,
There are more detailed results available about the convergence rate of

P f to f under various conditions of f and ¢ (see for example [3, 5]), but
they are all based on the original wavelet series (5).
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We propose instead to use a different series

(6) Bif(z) = Y f;8}(2),
where
(7 Bi(z) = 2°6(2* ¢ — j)

in analogy to (2). For any choice of ¢ and for any n € N, we will construct
a basis function §(z) with compact support so that for f € C",

(8) |[f(z) — Brf(2)l| = O(R™).

For simplicity, the dependence of 3 on n and ¢ is not usually expressed in
the notation. If necessary, we will denote the basis function for a particular
n as B(z;n), and similarly for the dependence on other parameters.

To construct 3, fix a scaling function ¢, a level number k € Z, and a
positive integer n. Assume that we are given the wavelet coefficients fJ’?,
7=0,1,... ,n—1

Following a standard approach in numerical analysis, we first attempt
to find cf(z), j = 0,1,... ,n — 1, so that

n—1
(9) 2P = Z(m”,qﬁf(w))cﬁ(w) forp=0,...,n—1.
=0
For f(z) = 2?,
> ¢]
f]k — <f, ¢§> - /— :np2k/2¢(2’°x _ j) dr = hp+(1/2)Mp,j,’
Let us define two n x n matrices H and M by
R o ... 0
1 LY
H = h1/2 0 h . O P
0 0 --- hv!
and
Mooy Moy -+ Mona

Mg Mg o My,

<
I

Mn—l,O Mn—l,l Mn—l,n—l
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Equation (9) leads to a system of linear equations for cf(ac), j=0,...,n—
1:
(10) Ac=d, -
where
A = HM,
(11) &z) = (c§(z),ci(@),...  cha(2)),

—

diz) = (1,z,2%,...,z7 T

It is easy to show that the matrix M is nonsingular for all choices of
¢, n. From (4) , it follows immediately that M = B - V, where B is the
lower triangular matrix with entries

bis = <Z>Mi—sa 0 S s S i)
S

and V is the Vandermonde matrix with entries v,; = j°. Hence,

n—1
det(M) = det(B) - det(V) = M} (H k!) # 0.

k=1
From
&z) = M*H 1 d(z) = n™Y*Md(z/h),
we observe that each cf(z) is a polynomial of degree n — 1 in (z/h), and
that
k -1/2.0 k/2 .0 ok
(12) (z) = K2 (x/h) = 2°/2(2bx).

To put this approach into a wavelet-like setting, we select a unit interval
I = [zg,z¢ + 1) for some (as yet undetermined) point zy. Scaled and
translated versions of I are denoted by Ii; = [(zo + )k, (zo + | + 1)h).

We restrict the use of formula (9) to the interval I;o. Values of f on a
translated interval I, ; are recovered by using the same coefficients cf on
a translated set of scaling functions

n~1+{

n—1
(13) f(l‘) ~ Z f]k-{\lc‘?(x - l) = Z ]kc";_l(l‘ - l) fOI‘ z E IO,I'
3=0

7=l
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We can write (13) in the desired form (6), (7) by defining
oa(z+tn—1) ifzefz—n+1,z0—n+2),

(14)  Blz) =19 Sz +1) if £ € [z — 1, 20),
(x) if z € [zg, zo + 1),
0 the others.

Note that (z) is a piecewise polynomial of degree n — 1.

3. Main Results

In this section we derive a condition for smoothness of basis function
B(z) for level k = 0. For notational simplicity we use ¢; instead of ¢J in
this section. The result is stated in the Theorem 3.6.

The following lemma provides a preliminary result which is used in the
proof of Lemma 3.3.

LEMMA 3.1. If i + k = j + | for nonnegative integers i,j,k,l with

k<l j<i, then
i\ [j i\ (1
6@ -06)
PROOF.

<7> @ - j!(ij)! k!(ﬁk)! - ,('z'—j)!liiu—k)!

- (z-k)!;;!(i_z)! B z!(iiz)! k!(llik)! - C) (11) q

The following two lemmas provide preliminary results which are used
in the proof of Theorem 3.4.

LEMMA 3.2. Forr <1,

o EOEOm]-EEO0)

PRrOOF. Just expand LHS for K =0,1,...,r and collect j' terms with
the same index [ first. That is, interchange the order of the double sum-
mations. O
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LEMMA 3.3.
o EOECm]-EEO0 ]

PROOF. Lett =i—k and r = s—¢t. Expand LHS for k =4,:—1,...,0
and collect M, terms with the same index m first. We have

k

SOECm] - SECC

S Z <i+:_s)<i+:—s)jr] M

|

Hence the proof is completed. a

Let b® be the pth derivative of each component of a vector b.

THEOREM 3.4. Let

o 1 () ( 0
7 z 0
Yp-1 zP~! 0
(17) A ’YP = xp = p' )
’}’p+1 $p+1 (p + 1)'1'
5 p+2 @+2)! 2
p+2 T 2!
i) o ooty |

(n—1-p)!
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be given. Then

-1 1 ) 0
( Yo (x+1) 0
Yp-2 (z + 1)P! 0
(18) A % | = (z+ 1) = p!
Yp (z+ 1)ptt (p+ 1’)'(:1:+1)
Tp+1 (z + 1)p+? (P+2) ( +1)
o) N )| e |

if and only if
Yn—1 = 0.

PROOF. Consider the (i + 1)st component of each side of (17) for i =
0,1,...,p— 1. We obtain

(19)

Zalﬂ] ZZ()"MH%:O for 1=0,1,...,p—1.

7=0 =0

Note that (19) implies
(20) Zji'yj:() for 1=0,1,...,p— 1.

Consider the (i + 1)st component of each side of (17) for ¢ = p,p +
1,...,n~1. We obtain

P = ai;Y; for t=pp+1,...,n-1
By letting k =i — p, we obtain

(21) (k+ Z k—}-p,]’Y] for k = 0, 1,. N (A 1 "p
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Consider the (i+1)st component of each side of (18) fori = 0,1,... ,p—
1. We obtain

(RHS)Z—H = 07
and
n—2
(LHS)is1 = @i0Yn—1+ Z Q;i+17j
j=0
n—2 i i
= Mivyp-1+ 2 kz:; <k> (7+1) Mi——k:l Y

= Mi”)’n—l =+ Z

< 3
1l |
o I}
r o
b
Il ~
[em]
TN
ol
N—’
WM?:-
[l
TN
o~
N’

QN

T

B
—

2

n—2 7 7 .
k
= Mi’)’n—l + [Z (Z) (Z)Mi—k} ]l:| Yis by (15)
=0 Li=0 Lk=t
7 i i k: n—2
= My + ) g )Mk Zy vj
1=0 k=l §=0
o (0 (K ]
= Miypa+ kI \ Mg [-(n = Dlyaei], by (20)
1=0 k=l
- e EE Qe
1=0 k=l

We obtain, for i =0,1,... ,p—1,
(22)

(LHS):11 — (RHS) i1 = [Mi— -y (k> (’l“)Mi_k(n—n‘] _—
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Consider the (i + 1)st component of each side of (18) for i = p,p +
1,...,n—1

(RHS)i1

il

o l\i—P
G Y

L [=0
n-171 1 i m m 7
|
() 35 (7)1t
j=0 Lm=p =0 i
n—-1171 i . m ]

(2 m .1
S (e
=0 Lm=0 1=0 i

n-1 [p—1 i m m
‘Z[ m>z<z)jIM’"‘l} "
j=0 Lm=0 =0

by (16)

by (15)
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n—2

(LHS)i1 = ai,oﬁn—l + Z Q4,5+17;5

=0

n—2

= M1+ 807

=0

We obtain, fori =p,p+1,... ,n—1,

(3)  (RHS)u - (LHS)1 = {Z ()mriee - Mi] Yo

s=0
By (22) and (23), we obtain that (18) if and only if v,,_; = 0, or

ZZ(;) <I;>Mi_k(n—1)l fori=0,1,... ,p—1,

M, — 1=0 k=l
Z(Z>ns/\/{i_s forte=p,p+1,...,n—1

S
5=0
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In fact, fori =1, if p > 2,

1

EI:Z (D (?)Ml_k(n —D) =M+ 14 (n—1) My,

1=0 k=l
and if p <1,
/i
Z (S)”SMz‘—s =M +n#M,.
s=0
Therefore, (18) holds if and only if v,-; = 0. O

-

THEOREM 3.5. In the equation A(G)® = (d)®), there exists an 7o € R
such that (cn_l)(p)(xo) =0 if and only if

(€na1)®(z) for i =0,
(ciz1)® (o) fori=1,...,n—1

(24) (c)P(zo+1) = {

PROOF. In the equation AP = cZ(”), we take £ = xp and z = ¢ + 1.
Then we have

C()(CEO) (p) 1 (p)
) 01(330) Zo
(25) Al calzo) =| = :
Cn-1(T0) zo™ !

and

CO(ZCO 4 1) . (P) 1 (P)

ci(zo+ 1) zo+ 1
(26) Al c(zo+1) — | (@m+1)

Cn_l(xo -+ 1) (.’L‘() + l)n_1
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By Theorem 3.4, there exists 29 € R such that (c,_1)® (zo) = 0 if and
only if

cn—-l(IO) (P - 1 (»)
60(1130) To + 1
(27) Al (@) =| (@+1)
Cn-2(Zo) (zo + )"
Subtract the equation (27) from the equation (26):
co(zo + 1) = caor(zo) \ ¥ 0
c1(zo + 1) — o) 0
(28) A ca(zo + 1) — ¢1(o) -1 0
cn-1(zo + 1) — cp_a(wo) 0
Since A is nonsingular, (28) holds if and only if (24) holds. Hence the
proof is completed. O

THEOREM 3.6. (8(z) € CP(R) if and only if there exists Tg € R such
that (cp-1)®(z9) =0 fori=0,1,...,p.

PROOF. From the definition for (z), B(z) € CP(R) if and only if it
is CP function at all interior nodes. It comes directly from the Theorem
3.4. a

REMARKS. 1. One of the advantages of Theorem 3.4 is that, even if we
define () on [zo—n+1, zo+1], B(z) is a C? function on [zg—n+1, Tg+1]
if and only if there exists zo € R such that (¢, ;)®(zq) = 0 for i =
0,1,...,p.

2. Note that f(z) is a piecewise polynomial of degree < n — 1 and the
coefficients of the degree n — 1 for ¢;(z) for i =0,1,... ,n — 1 are not all
equal in general. Hence the highest regularity we can achieve for §(z) is

cn2.
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