CASE tools are complex software products offering many different features. Systems professionals have evaluated various CASE products from a feature and attribute basis. Each product has a different mix of strengths and weaknesses as perceived by the end user. Specific CASE tools support different steps of the applications development process as well as varying methodologies. In this paper we develop a method for evaluating CASE tools. The model has an analytic hierarchy process for evaluating CASE tools in terms of functionality, management efficiency, and support ability of provider, and a data envelopment analysis for overall evaluation considering cost and AHP results. We applied the developed model to a real world case study.
Transactions of the Korean Society of Mechanical Engineers A
/
v.31
no.2
s.257
/
pp.260-268
/
2007
Demand for the use of 3D CAD DMU systems over the Internet environment has been increased. However, transmission of commercial 3D kernels has delayed the communication effectiveness due to the kernel size. Light weight CAD geometric kernel design methodology is required for rapid transmission in the distributed environment. In this paper, an assembly data structure suitable for the top-down and bottom-up assembly models has been constructed. Part features are stored without a hierarchy so that they are created and saved in no particular order. In particular, this paper proposes a new assembly representation model, called multi-level assembly representation (MAR), for the PDM based assembly DMU system. Since the geometric kernel retains assembly hierarchy and topological information, it is applied to the web-viewer for the PDM based DMU system. Effectiveness of the proposed geometric kernel is confirmed through various case studies.
Kim, Chang-Won;Kim, Chun-Hak;Cho, Hun-Hee;Kang, Kyung-In
Proceedings of the Korean Institute of Building Construction Conference
/
2012.11a
/
pp.127-128
/
2012
Recently, Construction industry has been trying to reduce environmental loads reflecting the global trend 'Green Growth'. Internal and External countries are provided 'green building certification', 'relevant law/regulations', 'guideline to life cycle', however, construction phase has been overlooked though environmental loads occurred intensively in this phase. Therefore, this study intend to deduct components reflected the guideline in construction phase and assess them quantitatively. The basis data is collected through survey targeting construction managers and related researchers and analyze these data using Analytic Hierarchy Process.
Journal of the Korea Society of Computer and Information
/
v.29
no.6
/
pp.131-141
/
2024
The aging population and worsening lifestyle habits have increased the risk of chronic diseases. This has heightened the importance of preventive healthcare, particularly through personalized health management services based on individual health data. Despite this, the domestic digital healthcare industry remains underdeveloped. Given the need for acceptance from both consumers and providers, this study uses the Analytic Hierarchy Process (AHP) to identify success factors for health management service platforms. AHP evaluates the relative importance of various factors to aid decision-making. Results show that providers prioritize data analysis and platform design, laws and regulations, and data standardization, while consumers prioritize system stability, laws and regulations, and system security. These findings highlight the need for strategies to bridge the expectation gap to effectively promote health management service platforms.
The literature has reported that hierarchical classification methods generally outperform the flat classification methods for a multi-class document classification problem. Unlike the literature that has constructed a class hierarchy, this paper evaluates the performance of hierarchical and flat classification methods under a situation where the class hierarchy is predefined. We conducted numerical evaluations for two data sets; research papers on climate change adaptation technologies in water sector and 20NewsGroup open data set. The evaluation results show that the hierarchical classification method outperforms the flat classification methods under a certain condition, which differs from the literature. The performance of hierarchical classification method over flat classification method depends on class similarities at levels in the class structure. More importantly, the hierarchical classification method works better when the upper level similarity is less that the lower level similarity.
Data is indispensable for digital transformation of agriculture with the development of innovative information and communication technology (ICT). In order to devise and prioritize strategies for enhancing data competitiveness in the agricultural sector, we employed an Analytic Hierarchy Process (AHP) analysis. Drawing from existing research on data competitiveness indicators, we developed a three-tier decision-making structure reflecting unique characteristics of the agricultural sector such as farmers'awareness of the data industry or awareness of agriculture among data workers. AHP survey was administered to experts from both agricultural and non-agricultural sectors with a high understanding of data. The overall composite importance, derived from the respondents, was rated in the following order: 'Employment Support', 'Data Standardization', 'R&D Support', 'Start-up Ecosystem Support', 'Relaxation of Regulations', 'Legislation', and 'Data Analytics and Utilization Technology'. In the case of experts in the agricultural sector, 'Employment Support' was ranked as the top priorities, and 'Legislation', 'Undergrad and Grad Education', and 'In-house Training' were also regarded as highly important. On the other hand, experts in the non-agricultural sector perceived 'Data Standardization' and 'Relaxation of Regulations' as the top two priorities, and 'Data Center' and 'Open Public Data' were also highly rated.
KIPS Transactions on Software and Data Engineering
/
v.10
no.3
/
pp.79-84
/
2021
A feature extraction method capable of reflecting features well while mainaining the properties of data is required in order to process high-dimensional data. The principal component analysis method that converts high-level data into low-dimensional data and express high-dimensional data with fewer variables than the original data is a representative method for feature extraction of data. In this study, we propose a principal component analysis method based on adaptive correlation when selecting principal component variables in principal component analysis for data feature extraction when the data is high-dimensional. The proposed method analyzes the principal components of the data by adaptively reflecting the correlation based on the correlation between the input data. I want to exclude them from the candidate list. It is intended to analyze the principal component hierarchy by the eigen-vector coefficient value, to prevent the selection of the principal component with a low hierarchy, and to minimize the occurrence of data duplication inducing data bias through correlation analysis. Through this, we propose a method of selecting a well-presented principal component variable that represents the characteristics of actual data by reducing the influence of data bias when selecting the principal component variable.
This study describes a novel algorithm for optimizing the quality yield of silicon wafer slicing. 12 inch wafer slicing is the most difficult in terms of semiconductor manufacturing yield. As silicon wafer slicing directly impacts production costs, semiconductor manufacturers are especially concerned with increasing and maintaining the yield, as well as identifying why yields decline. The criteria for establishing the proposed algorithm are derived from a literature review and interviews with a group of experts in semiconductor manufacturing. The modified Delphi method is then adopted to analyze those results. The proposed algorithm also incorporates the analytic hierarchy process (AHP) to determine the weights of evaluation. Additionally, the proposed algorithm can select the evaluation outcomes to identify the worst machine of precision. Finally, results of the exponential weighted moving average (EWMA) control chart demonstrate the feasibility of the proposed AHP-based algorithm in effectively selecting the evaluation outcomes and evaluating the precision of the worst performing machines. So, through collect data (the quality and quantity) to judge the result by AHP, it is the key to help the engineer can find out the manufacturing process yield quickly effectively.
Journal of The Korean Society of Agricultural Engineers
/
v.49
no.3
/
pp.63-68
/
2007
The LRA(Logistic Regression Analysis) conducts a quantitative analysis by collecting a lot of samples and the AHP(Analytic Hierarchy Program) makes use of expert decision influenced by subjective judgment to a certain degree. This study is to suggest a combination method in mapping landslide hazard by giving equal weight for the result of LRA and AHP. Topographic factors(slope, aspect, elevation), soil dram, soil depth and land use were adopted to classify landslide hazard areas. The three methods(LRA, AHP, the combined approach) was applied to a $520km^2$ region located in the middle of South Korea which have occurred 39 landslides during 1999 and 2003. The suggested method showed 58.9% matching rate for the real landslide sites comparing with the classified areas of high-risk landslide While LRA and AHP Showed 46.1% and 48.7% matching rates respectively. Further studies are recommended to find the optimal combining weight of LRA and AHP with more landslide data.
In order to improve the performance of image classifications using Convolutional Neural Networks (CNN), applying a category hierarchy to the classification can be a useful idea. However, the visual separation of object categories is very different according to the upper and lower category levels and highly uneven in image classifications. Therefore, it is doubtable whether the use of category hierarchies for classification is effective in CNN. In this paper, we have clarified whether the image classification using category hierarchies improves classification performance, and found at which level of hierarchy classification is more effective. For experiments we divided the image classification task according to the upper and lower category levels and assigned image data to each CNN model. We identified and compared the results of three classification models and analyzed them. Through the experiments, we could confirm that classification effectiveness was not improved by reduction of number of categories in a classification model. And we found that only with the re-training method in the last network layer, the performance of lower category classification was not improved although that of higher category classification was improved.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.