• Title/Summary/Keyword: Hierarchical feature extraction

Search Result 34, Processing Time 0.021 seconds

Design of Hierarchical Classifier for Classifying Defects of Cold Mill Strip using Neural Networks (신경회로망을 이용한 냉연 표면흠 분류를 위한 계층적 분류기의 설계)

  • Kim, Kyoung-Min;Lyou, Kyoung;Jung, Woo-Yong;Park, Gwi-Tae;Park, Joong-Jo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.4
    • /
    • pp.499-505
    • /
    • 1998
  • In developing an automated surface inspect algorithm, we have designed a hierarchical classifier using neural network. The defects which exist on the surface of cold mill strip have a scattering or singular distribution. We have considered three major problems, that is preprocessing, feature extraction and defect classification. In preprocessing, Top-hit transform, adaptive thresholding, thinning and noise rejection are used Especially, Top-hit transform using local minimax operation diminishes the effect of bad lighting. In feature extraction, geometric, moment, co-occurrence matrix, and histogram ratio features are calculated. The histogram ratio feature is taken from the gray-level image. For defect classification, we suggest a hierarchical structure of which nodes are multilayer neural network classifiers. The proposed algorithm reduced error rate by comparing to one-stage structure.

  • PDF

Efficient Content-Based Image Retrieval Methods Using Color and Texture

  • Lee, Sang-Mi;Bae, Hee-Jung;Jung, Sung-Hwan
    • ETRI Journal
    • /
    • v.20 no.3
    • /
    • pp.272-283
    • /
    • 1998
  • In this paper, we propose efficient content-based image retrieval methods using the automatic extraction of the low-level visual features as image content. Two new feature extraction methods are presented. The first one os an advanced color feature extraction derived from the modification of Stricker's method. The second one is a texture feature extraction using some DCT coefficients which represent some dominant directions and gray level variations of the image. In the experiment with an image database of 200 natural images, the proposed methods show higher performance than other methods. They can be combined into an efficient hierarchical retrieval method.

  • PDF

Dynamic gesture recognition using a model-based temporal self-similarity and its application to taebo gesture recognition

  • Lee, Kyoung-Mi;Won, Hey-Min
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2824-2838
    • /
    • 2013
  • There has been a lot of attention paid recently to analyze dynamic human gestures that vary over time. Most attention to dynamic gestures concerns with spatio-temporal features, as compared to analyzing each frame of gestures separately. For accurate dynamic gesture recognition, motion feature extraction algorithms need to find representative features that uniquely identify time-varying gestures. This paper proposes a new feature-extraction algorithm using temporal self-similarity based on a hierarchical human model. Because a conventional temporal self-similarity method computes a whole movement among the continuous frames, the conventional temporal self-similarity method cannot recognize different gestures with the same amount of movement. The proposed model-based temporal self-similarity method groups body parts of a hierarchical model into several sets and calculates movements for each set. While recognition results can depend on how the sets are made, the best way to find optimal sets is to separate frequently used body parts from less-used body parts. Then, we apply a multiclass support vector machine whose optimization algorithm is based on structural support vector machines. In this paper, the effectiveness of the proposed feature extraction algorithm is demonstrated in an application for taebo gesture recognition. We show that the model-based temporal self-similarity method can overcome the shortcomings of the conventional temporal self-similarity method and the recognition results of the model-based method are superior to that of the conventional method.

Hierarchical stereo matching using feature extraction of an image

  • Kim, Tae-June;Yoo, Ji-Sang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.99-102
    • /
    • 2009
  • In this paper a hierarchical stereo matching algorithm based on feature extraction is proposed. The boundary (edge) as feature point in an image is first obtained by segmenting an image into red, green, blue and white regions. With the obtained boundary information, disparities are extracted by matching window on the image boundary, and the initial disparity map is generated when assigned the same disparity to neighbor pixels. The final disparity map is created with the initial disparity. The regions with the same initial disparity are classified into the regions with the same color and we search the disparity again in each region with the same color by changing block size and search range. The experiment results are evaluated on the Middlebury data set and it show that the proposed algorithm performed better than a phase based algorithm in the sense that only about 14% of the disparities for the entire image are inaccurate in the final disparity map. Furthermore, it was verified that the boundary of each region with the same disparity was clearly distinguished.

  • PDF

A Study on the Feature Extraction for High Speed Character Recognition -By Using Interative Extraction and Hierarchical Formation of Directional Information- (고속 문자 인식을 위한 특징량 추출에 관한 연구 - 방향정보의 반복적 추출과 특징량의 계층성을 이용하여 -)

  • 강선미;이기용;양윤모;양윤모;김덕진
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.11
    • /
    • pp.102-110
    • /
    • 1992
  • In this paper, a new method of character recognition is proposed. It uses density information, in addition to positional and directional information generally used, to recognize a character. Four directional feature primitives are extracted from the thinning templates on the observation that the output of the templates have directional property in general. A simple and fast feature extraction scheme is possible. Features are organized from recursive nonary tree(N-tree) that corresponds to normalized character area. Each node of the N-tree has four directional features that are sum of the features of it's nine sub-nodes. Every feature primitive from the templates are added to the corresponding leaf and then summed to the upper nodes successively. Recognition can be accomplished by using appropriate feature level of N-tree. Also, effectiveness of each node's feature vector was tested by experiment. A method to implement the proposed feature vector organization algorithm into hardware is proposed as well. The third generation node, which is 4$\times$4, is used as a unit processing element to extract features, and it was implemented in hardware. As a result, we could observe that it is possible to extract feature vector for real-time processing.

  • PDF

Hierarchical 3D modeling using disparity-motion relationship and feature points (변이-움직임 관계와 특징점을 이용한 계층적 3차원 모델링)

  • Lee, Ho-Geun;Han, Gyu-Pil;Ha, Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.1
    • /
    • pp.9-16
    • /
    • 2002
  • This paper proposes a new 3D modeling technique using disparity-motion relationship and feature points. To generate the 3D model from real scene, generally, we need to compute depth of model vertices from the dense correspondence map over whole images. It takes much time and is also very difficult to get accurate depth. To improve such problems, in this paper, we only need to find the correspondence of some feature points to generate a 3D model of object without dense correspondence map. The proposed method consists of three parts, which are the extraction of object, the extraction of feature points, and the hierarchical 3D modeling using classified feature points. It has characteristics of low complexity and is effective to synthesize images with virtual view and to express the smoothness of Plain regions and the sharpness of edges.

Improving the Cyber Security over Banking Sector by Detecting the Malicious Attacks Using the Wrapper Stepwise Resnet Classifier

  • Damodharan Kuttiyappan;Rajasekar, V
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.6
    • /
    • pp.1657-1673
    • /
    • 2023
  • With the advancement of information technology, criminals employ multiple cyberspaces to promote cybercrime. To combat cybercrime and cyber dangers, banks and financial institutions use artificial intelligence (AI). AI technologies assist the banking sector to develop and grow in many ways. Transparency and explanation of AI's ability are required to preserve trust. Deep learning protects client behavior and interest data. Deep learning techniques may anticipate cyber-attack behavior, allowing for secure banking transactions. This proposed approach is based on a user-centric design that safeguards people's private data over banking. Here, initially, the attack data can be generated over banking transactions. Routing is done for the configuration of the nodes. Then, the obtained data can be preprocessed for removing the errors. Followed by hierarchical network feature extraction can be used to identify the abnormal features related to the attack. Finally, the user data can be protected and the malicious attack in the transmission route can be identified by using the Wrapper stepwise ResNet classifier. The proposed work outperforms other techniques in terms of attack detection and accuracy, and the findings are depicted in the graphical format by employing the Python tool.

A NEW DETAIL EXTRACTION TECHNIQUE FOR VIDEO SEQUENCE CODING USING MORPHOLOGICAL LAPLACIAN OPERATOR (수리형태학적 Laplacian 연산을 이용한 새로운 동영상 Detail 추출 방법)

  • Eo, Jin-Woo;Kim, Hui-Jun
    • Journal of IKEEE
    • /
    • v.4 no.2 s.7
    • /
    • pp.288-294
    • /
    • 2000
  • In this paper, an efficient detail extraction technique for a progressive coding scheme is proposed. The existing technique using the top-hat transformation yields an efficient extraction scheme for isolated and visually important details, but yields an inefficient results containing significant redundancy extracting the contour information. The proposed technique using the strong edge feature extraction property of the morphological Laplacian in this paper can reduce the redundancy, and thus provides lower bit-rate. Experimental results show that the proposed technique is more efficient than the existing one, and promise the applicability of the morphological Laplacian operator.

  • PDF

Single Image Super Resolution using sub-Edge Extraction based on Hierarchical Structure (계층적 보조 경계 추출을 이용한 단일 영상의 초해상도 기법)

  • Hyun Ho, Han
    • Journal of Digital Policy
    • /
    • v.1 no.2
    • /
    • pp.53-59
    • /
    • 2022
  • In this paper, we proposed a method using sub-edge information extracted through a hierarchical structure in the process of generating super resolution based on a single image. In order to improve the quality of super resolution, it is necessary to clearly distinguish the shape of each area while clearly expressing the boundary area in the image. The proposed method assists edge information of the image in deep learning based super resolution method to create an improved super resolution result while maintaining the structural shape of the boundary region, which is an important factor determining the quality in the super resolution process. In addition to the group convolution structure for performing deep learning based super resolution, a separate hierarchical edge accumulation extraction process based on high-frequency band information for sub-edge extraction is proposed, and a method of using it as an auxiliary feature is proposed. Experimental results showed about 1% performance improvement in PSNR and SSIM compared to the existing super resolution.

Fault Diagnosis of Induction Motor by Hierarchical Classifier (계층구조의 분류기에 의한 유도전동기 고장진단)

  • Lee, Dae-Jong;Song, Chang-Kyu;Lee, Jae-Kyung;Chun, Myung-Guen
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.6
    • /
    • pp.513-518
    • /
    • 2007
  • In this paper, we propose a fault diagnosis scheme tor induction motor by adopting a hierarchical classifier consisting of k-Nearest Neighbors(k-NN) and Support Vector Machine(SVM). First, some motor conditions are classified by a simple k-NN classifier in advance. And then, more complicated classes are distinguished by SVM. To obtain the normal and fault data, we established an experimental unit with induction motor system and data acquisition module. Feature extraction is performed by Principal Component Analysis(PCA). To show its effectiveness, the proposed fault diagnostic system has been intensively tested with various data acquired under the different electrical and mechanical faults with varying load.