• Title/Summary/Keyword: Hierarchical Neural Network

Search Result 127, Processing Time 0.026 seconds

Fault Diagnosis Method of Complex System by Hierarchical Structure Approach (계층구조 접근에 의한 복합시스템 고장진단 기법)

  • Bae, Yong-Hwan;Lee, Seok-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.11
    • /
    • pp.135-146
    • /
    • 1997
  • This paper describes fault diagnosis method in complex system with hierachical structure similar to human body structure. Complex system is divided into unit, item and component. For diagnosing this hierarchical complex system, it is necessary to implement special neural network. Fault diagnosis system can forecast faults in a system and decide from current machine state signal information. Comparing with other diagnosis system for single fault, the developed system deals with multiple fault diagnosis comprising Hierarchical Neural Network(HNN). HNN consists of four level neural network, first level for item fault symptom classification, second level for item fault diagnosis, third level for component symptom classification, forth level for component fault diagnosis. UNIX IPC(Inter Process Communication) is used for implementing HNN wiht multitasking and message transfer between processes in SUN workstation with X-Windows(Motif). We tested HNN at four units, seven items per unit, seven components per item in a complex system. Each one neural newtork operate as a separate process in HNN. The message queue take charge of information exdhange and cooperation between each neural network.

  • PDF

Development of Intelligent Fault Diagnosis System for CIM (CIM 구축을 위한 지능형 고장진단 시스템 개발)

  • Bae, Yong-Hwan;Oh, Sang-Yeob
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.2
    • /
    • pp.199-205
    • /
    • 2004
  • This paper describes the fault diagnosis method to order to construct CIM in complex system with hierarchical structure similar to human body structure. Complex system is divided into unit, item and component. For diagnosing this hierarchical complex system, it is necessary to implement a special neural network. Fault diagnosis system can forecast faults in a system and decide from the signal information of current machine state. Comparing with other diagnosis system for a single fault, the developed system deals with multiple fault diagnosis, comprising hierarchical neural network (HNN). HNN consists of four level neural network, i.e. first is fault symptom classification and second fault diagnosis for item, third is symptom classification and forth fault diagnosis for component. UNIX IPC is used for implementing HNN with multitasking and message transfer between processes in SUN workstation with X-Windows (Motif). We tested HNN at four units, seven items per unit, seven components per item in a complex system. Each one neural network represents a separate process in UNIX operating system, information exchanging and cooperating between each neural network was done by message queue.

  • PDF

Unification of neural network with a hierarchical pattern recognition

  • Park, Chang-Mock;Wang, Gi-Nam
    • Proceedings of the ESK Conference
    • /
    • 1996.10a
    • /
    • pp.197-205
    • /
    • 1996
  • Unification of neural network with a hierarchical pattern recognition is presented for recognizing large set of objects. A two-step identification procedure is developed for pattern recognition: coarse and fine identification. The coarse identification is designed for finding a class of object while the fine identification procedure is to identify a specific object. During the training phase a course neural network is trained for clustering larger set of reference objects into a number of groups. For training a fine neural network, expert neural network is also trained to identify a specific object within a group. The presented idea can be interpreted as two step identification. Experimental results are given to verify the proposed methodology.

  • PDF

Performance Improvement of Object Recognition System in Broadcast Media Using Hierarchical CNN (계층적 CNN을 이용한 방송 매체 내의 객체 인식 시스템 성능향상 방안)

  • Kwon, Myung-Kyu;Yang, Hyo-Sik
    • Journal of Digital Convergence
    • /
    • v.15 no.3
    • /
    • pp.201-209
    • /
    • 2017
  • This paper is a smartphone object recognition system using hierarchical convolutional neural network. The overall configuration is a method of communicating object information to the smartphone by matching the collected data by connecting the smartphone and the server and recognizing the object to the convergence neural network in the server. It is also compared to a hierarchical convolutional neural network and a fractional convolutional neural network. Hierarchical convolutional neural networks have 88% accuracy, fractional convolutional neural networks have 73% accuracy and 15%p performance improvement. Based on this, it shows possibility of expansion of T-Commerce market connected with smartphone and broadcasting media.

Architectures of the Parallel, Self-Organizing Hierarchical Neural Networks (병렬 자구성 계층 신경망 (PSHINN)의 구조)

  • 윤영우;문태현;홍대식;강창언
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.1
    • /
    • pp.88-98
    • /
    • 1994
  • A new neural network architecture called the Parallel. Self-Organizing Hierarchical Neural Network (PSHNN) is presented. The new architecture involves a number of stages in which each stage can be a particular neural network (SNN). The experiments performed in comparison to multi-layered network with backpropagation training and indicated the superiority of the new architecture in the sense of classification accuracy, training time,parallelism.

  • PDF

Robot PTP Trajectory Planning Using a Hierarchical Neural Network Structure (계층 구조의 신경회로망에 의한 로보트 PTP 궤적 계획)

  • 경계현;고명삼;이범희
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.10
    • /
    • pp.1121-1232
    • /
    • 1990
  • A hierarchical neural network structure is described for robot PTP trajectory planning. In the first level, the multi-layered Perceptron neural network is used for the inverse kinematics with the back-propagation learning procedure. In the second level, a saccade generation model based joint trajectory planning model in proposed and analyzed with several features. Various simulations are performed to investigate the characteristics of the proposed neural networks.

  • PDF

Implementation on the Classifier for Differential Diagnosis of Laryngeal Disease using Hierarchical Neural Network (계층적 신경회로망을 이용한 후두질환 감별 분류기)

  • 김경태;김길중;전계록
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.1
    • /
    • pp.76-82
    • /
    • 2002
  • In this paper, we implemented on the classifier for differential diagnosis of laryngeals disease which is normal, polyp, nodule, palsy, and each step of glottic cancer using hierarchical neural network. We conducted on classifier of various vowels as /a/, /e/, /i/, /o/, /u/ from normal group, laryngeal disease group, each step of cancer group. The experimental result on classification of each vowels as follows. A /a/ vowel shows excellent classification result to the other vowels in regard to each Input parameters. Thus we implemented the hierarchical neural network for differential diagnosis of laryngeals disease using only /a/ vowel. A implemented hierarchical neural network is composed of each other laryngeals disease apply to each other parameter in each hierarchical layer. We take the voice signals from patient who get the laryngeal disease and glottic cancer, and then use the APQ, PPQ, vAm, Jitter, Shimmer, RAP as input parameter of neural networks.

Optical Flow Estimation Using the Hierarchical Hopfield Neural Networks (계층적 Hopfield 신경 회로망을 이용한 Optical Flow 추정)

  • 김문갑;진성일
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.3
    • /
    • pp.48-56
    • /
    • 1995
  • This paper presents a method of implementing efficient optical flow estimation for dynamic scene analysis using the hierarchical Hopfield neural networks. Given the two consequent inages, Zhou and Chellappa suggested the Hopfield neural network for computing the optical flow. The major problem of this algorithm is that Zhou and Chellappa's network accompanies self-feedback term, which forces them to check the energy change every iteration and only to accept the case where the lower the energy level is guaranteed. This is not only undesirable but also inefficient in implementing the Hopfield network. The another problem is that this model cannot allow the exact computation of optical flow in the case that the disparities of the moving objects are large. This paper improves the Zhou and Chellapa's problems by modifying the structure of the network to satisfy the convergence condition of the Hopfield model and suggesting the hierarchical algorithm, which enables the computation of the optical flow using the hierarchical structure even in the presence of large disparities.

  • PDF

General Purpose Operation Unit Using Modular Hierarchical Structure of Expert Network (Expert Network의 모듈형 계층구조를 이용한 범용 연산회로 설계)

  • 양정모;홍광진;조현찬;서재용;전홍태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09b
    • /
    • pp.122-125
    • /
    • 2003
  • By advent of NNC(Neural Network Chip), it is possible that process in parallel and discern the importance of signal with learning oneself by experience in external signal. So, the design of general purpose operation unit using VHDL(VHSIC Hardware Description Language) on the existing FPGA(Field Programmable Gate Array) can replaced EN(Expert Network) and learning algorithm. Also, neural network operation unit is possible various operation using learning of NN(Neural Network). This paper present general purpose operation unit using hierarchical structure of EN EN of presented structure learn from logical gate which constitute a operation unit, it relocated several layer The overall structure is hierarchical using a module, it has generality more than FPGA operation unit.

  • PDF

Multiple Fault Diagnosis Method by Modular Artificial Neural Network (모듈신경망을 이용한 다중고장 진단기법)

  • 배용환;이석희
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.2
    • /
    • pp.35-44
    • /
    • 1998
  • This paper describes multiple fault diagnosis method in complex system with hierarchical structure. Complex system is divided into subsystem, item and component. For diagnosing this hierarchical complex system, it is necessary to implement special neural network. We introduced Modular Artificial Neural Network(MANN) for this purpose. MANN consists of four level neural network, first level for symptom classification, second level for item fault diagnosis, third level for component symptom classification, forth level for component fault diagnosis. Each network is multi layer perceptron with 7 inputs, 30 hidden node and 7 outputs trained by backpropagation. UNIX IPC(Inter Process Communication) is used for implementing MANN with multitasking and message transfer between processes in SUN workstation. We tested MANN in reactor system.

  • PDF