• Title/Summary/Keyword: Hierarchical Generalized Linear Model

Search Result 32, Processing Time 0.032 seconds

Sire Evaluation of Count Traits with a Poisson-Gamma Hierarchical Generalized Linear Model

  • Lee, C.;Lee, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.6
    • /
    • pp.642-647
    • /
    • 1998
  • A Poisson error model as a generalized linear mixed model (GLMM) has been suggested for genetic analysis of counted observations. One of the assumptions in this model is the normality for random effects. Since this assumption is not always appropriate, a more flexible model is needed. For count traits, a Poisson hierarchical generalized linear model (HGLM) that does not require the normality for random effects was proposed. In this paper, a Poisson-Gamma HGLM was examined along with corresponding analytical methods. While a difficulty arises with Poisson GLMM in making inferences to the expected values of observations, it can be avoided with the Poisson-Gamma HGLM. A numerical example with simulated embryo yield data is presented.

Likelihood-Based Inference on Genetic Variance Component with a Hierarchical Poisson Generalized Linear Mixed Model

  • Lee, C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.8
    • /
    • pp.1035-1039
    • /
    • 2000
  • This study developed a Poisson generalized linear mixed model and a procedure to estimate genetic parameters for count traits. The method derived from a frequentist perspective was based on hierarchical likelihood, and the maximum adjusted profile hierarchical likelihood was employed to estimate dispersion parameters of genetic random effects. Current approach is a generalization of Henderson's method to non-normal data, and was applied to simulated data. Underestimation was observed in the genetic variance component estimates for the data simulated with large heritability by using the Poisson generalized linear mixed model and the corresponding maximum adjusted profile hierarchical likelihood. However, the current method fitted the data generated with small heritability better than those generated with large heritability.

Determinants of the Working Poor : An Analysis Using Hierarchical Generalized Linear Model (근로계층의 빈곤 결정요인에 관한 다층분석)

  • Kim, Kyo-Seong;Choi, Young
    • Korean Journal of Social Welfare
    • /
    • v.58 no.2
    • /
    • pp.119-141
    • /
    • 2006
  • This study aims to explore the status and characteristics of the working poor and to identify the major determinants of their statistic status. For this, longitudinal panel data (from 2nd wave(1999) data to 7th wave(2004) data) from Korean Labor and Income Panel Study (KLIPS), is used. The data is analyzed by adopting Hierarchical Generalized Linear Model (HGLM), which is known as an app.opriate data analysis method for the hierarchically structured data, to look at the factors that affect on the poverty status of the working people. The results show that 1) it is estimated that about 1 out of 10 working people (about 10.0%) are poor, and 2) sex, education level, marital status, region where they lives, employment status, occupation type, and industry type that they are working at are significant predictors in determining their poverty status. Unlike the results of the previous studies, however, the number of the household member, age are not influenced on their poverty status. Based on these results, several policy implications are presented at the end of this paper.

  • PDF

Joint HGLM approach for repeated measures and survival data

  • Ha, Il Do
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.4
    • /
    • pp.1083-1090
    • /
    • 2016
  • In clinical studies, different types of outcomes (e.g. repeated measures data and time-to-event data) for the same subject tend to be observed, and these data can be correlated. For example, a response variable of interest can be measured repeatedly over time on the same subject and at the same time, an event time representing a terminating event is also obtained. Joint modelling using a shared random effect is useful for analyzing these data. Inferences based on marginal likelihood may involve the evaluation of analytically intractable integrations over the random-effect distributions. In this paper we propose a joint HGLM approach for analyzing such outcomes using the HGLM (hierarchical generalized linear model) method based on h-likelihood (i.e. hierarchical likelihood), which avoids these integration itself. The proposed method has been demonstrated using various numerical studies.

The Use of Joint Hierarchical Generalized Linear Models: Application to Multivariate Longitudinal Data (결합 다단계 일반화 선형모형을 이용한 다변량 경시적 자료 분석)

  • Lee, Donghwan;Yoo, Jae Keun
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.2
    • /
    • pp.335-342
    • /
    • 2015
  • Joint hierarchical generalized linear models proposed by Molas et al. (2013) extend the simple longitudinal model into multiple models fitted jointly. It can easily handle the correlation of multivariate longitudinal data. In this paper, we apply this method to analyze KoGES cohort dataset. Fixed unknown parameters, random effects and variance components are estimated based on a standard framework of h-likelihood theory. Furthermore, based on the conditional Akaike information criterion the correlated covariance structure of random-effect model is selected rather than an independent structure.

Small Area Estimation Techniques Based on Logistic Model to Estimate Unemployment Rate

  • Kim, Young-Won;Choi, Hyung-a
    • Communications for Statistical Applications and Methods
    • /
    • v.11 no.3
    • /
    • pp.583-595
    • /
    • 2004
  • For the Korean Economically Active Population Survey(EAPS), we consider the composite estimator based on logistic regression model to estimate the unemployment rate for small areas(Si/Gun). Also, small area estimation technique based on hierarchical generalized linear model is proposed to include the random effect which reflect the characteristic of the small areas. The proposed estimation techniques are applied to real domestic data which is from the Korean EAPS of Choongbuk. The MSE of these estimators are estimated by Jackknife method, and the efficiencies of small area estimators are evaluated by the RRMSE. As a result, the composite estimator based on logistic model is much more efficient than others and it turns out that the composite estimator can produce the reliable estimates under the current EAPS system.

Determinants of the Digital Divide using Hierarchical Generalized Linear Model (위계선형모형을 이용한 개인의 정보화 격차 결정요인)

  • Kim, Mi-Young;Choe, Young-Chan
    • Journal of Korean Society of Rural Planning
    • /
    • v.14 no.3
    • /
    • pp.63-73
    • /
    • 2008
  • The purpose of this study is to analyze the determinants of the digital divide at individual level and regional level in Korea, considering interaction between individual and the regional variables. Following results are obtained. First, individual level digital devide in the 16 different regions has been found in terms of Internet use, implying the needs for further analysis on impact of the regional factor in individual Internet use. Second, the result finds the impact of level-l individual variables, "gender, age, education, income and jobs" on digital divide, significantly at level 10% level. Third, the regional variables influencing the individual digital divide were not found at state level. However, regional factors might affect digital devide at county level. Study suggest some plans to reduce digital divide. First, the digital devide at individual level should be remedied by focusing on neglected class of people. Second, we need to approach the digital divide by analyzing in more detail, reflecting interactions of the regional variables and individual variables. Third, we should come up with a policy for mending the digital divide at regional level.

A HGLM framework for Meta-Analysis of Clinical Trials with Binary Outcomes

  • Ha, Il-Do
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.4
    • /
    • pp.1429-1440
    • /
    • 2008
  • In a meta-analysis combining the results from different clinical trials, it is important to consider the possible heterogeneity in outcomes between trials. Such variations can be regarded as random effects. Thus, random-effect models such as HGLMs (hierarchical generalized linear models) are very useful. In this paper, we propose a HGLM framework for analyzing the binominal response data which may have variations in the odds-ratios between clinical trials. We also present the prediction intervals for random effects which are in practice useful to investigate the heterogeneity of the trial effects. The proposed method is illustrated with a real-data set on 22 trials about respiratory tract infections. We further demonstrate that an appropriate HGLM can be confirmed via model-selection criteria.

  • PDF

Review of Mixed-Effect Models (혼합효과모형의 리뷰)

  • Lee, Youngjo
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.2
    • /
    • pp.123-136
    • /
    • 2015
  • Science has developed with great achievements after Galileo's discovery of the law depicting a relationship between observable variables. However, many natural phenomena have been better explained by models including unobservable random effects. A mixed effect model was the first statistical model that included unobservable random effects. The importance of the mixed effect models is growing along with the advancement of computational technologies to infer complicated phenomena; subsequently mixed effect models have extended to various statistical models such as hierarchical generalized linear models. Hierarchical likelihood has been suggested to estimate unobservable random effects. Our special issue about mixed effect models shows how they can be used in statistical problems as well as discusses important needs for future developments. Frequentist and Bayesian approaches are also investigated.

Empirical Bayes Estimate for Mixed Model with Time Effect

  • Kim, Yong-Chul
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.2
    • /
    • pp.515-520
    • /
    • 2002
  • In general, we use the hierarchical Poisson-gamma model for the Poisson data in generalized linear model. Time effect will be emphasized for the analysis of the observed data to be collected annually for the time period. An extended model with time effect for estimating the effect is proposed. In particularly, we discuss the Quasi likelihood function which is used to numerical approximation for the likelihood function of the parameter.