• 제목/요약/키워드: Hierarchical Generalized Linear Model

검색결과 32건 처리시간 0.02초

Sire Evaluation of Count Traits with a Poisson-Gamma Hierarchical Generalized Linear Model

  • Lee, C.;Lee, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제11권6호
    • /
    • pp.642-647
    • /
    • 1998
  • A Poisson error model as a generalized linear mixed model (GLMM) has been suggested for genetic analysis of counted observations. One of the assumptions in this model is the normality for random effects. Since this assumption is not always appropriate, a more flexible model is needed. For count traits, a Poisson hierarchical generalized linear model (HGLM) that does not require the normality for random effects was proposed. In this paper, a Poisson-Gamma HGLM was examined along with corresponding analytical methods. While a difficulty arises with Poisson GLMM in making inferences to the expected values of observations, it can be avoided with the Poisson-Gamma HGLM. A numerical example with simulated embryo yield data is presented.

Likelihood-Based Inference on Genetic Variance Component with a Hierarchical Poisson Generalized Linear Mixed Model

  • Lee, C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제13권8호
    • /
    • pp.1035-1039
    • /
    • 2000
  • This study developed a Poisson generalized linear mixed model and a procedure to estimate genetic parameters for count traits. The method derived from a frequentist perspective was based on hierarchical likelihood, and the maximum adjusted profile hierarchical likelihood was employed to estimate dispersion parameters of genetic random effects. Current approach is a generalization of Henderson's method to non-normal data, and was applied to simulated data. Underestimation was observed in the genetic variance component estimates for the data simulated with large heritability by using the Poisson generalized linear mixed model and the corresponding maximum adjusted profile hierarchical likelihood. However, the current method fitted the data generated with small heritability better than those generated with large heritability.

근로계층의 빈곤 결정요인에 관한 다층분석 (Determinants of the Working Poor : An Analysis Using Hierarchical Generalized Linear Model)

  • 김교성;최영
    • 한국사회복지학
    • /
    • 제58권2호
    • /
    • pp.119-141
    • /
    • 2006
  • 본 연구의 목적은 우리나라 근로빈곤층의 실태와 특성을 파악하고 근로빈곤층의 정태적 결정요인을 파악하는데 있다. 이를 위해 본 연구는 한국노동패널조사의 제2차년도(1999년)부터 제7차년도(2004년)의 반복측정 자료를 개인간(between-person), 개인내(within-person) 2층(two-level)으로 병합하여 자료를 구성하고 이를 통해 각 수준의 변수들이 근로자의 빈곤지위여부에 미치는 영양을 위계적 일반화 선형모형(HGLM: hierarchical generalized linear model)을 이용하여 추정하였다. 분석의 결과, 우리나라 취업자 가운데 가구소득이 빈곤선 이하의 생활을 하는 근로빈곤층(개인)의 규모는 약 10.0% 내외의 규모를 보이는 것으로 나타났다. 이러한 근로계층의 빈곤지위에 영양을 미치는 요인으로는 성별, 교육수준, 결혼상태, 취업형태, 고용업종, 고용직종 등으로 밝혀졌으며 이외 가구원수, 연령 등은 유의미안 영향을 미치지 않은 것으로 나타났다.

  • PDF

Joint HGLM approach for repeated measures and survival data

  • Ha, Il Do
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권4호
    • /
    • pp.1083-1090
    • /
    • 2016
  • In clinical studies, different types of outcomes (e.g. repeated measures data and time-to-event data) for the same subject tend to be observed, and these data can be correlated. For example, a response variable of interest can be measured repeatedly over time on the same subject and at the same time, an event time representing a terminating event is also obtained. Joint modelling using a shared random effect is useful for analyzing these data. Inferences based on marginal likelihood may involve the evaluation of analytically intractable integrations over the random-effect distributions. In this paper we propose a joint HGLM approach for analyzing such outcomes using the HGLM (hierarchical generalized linear model) method based on h-likelihood (i.e. hierarchical likelihood), which avoids these integration itself. The proposed method has been demonstrated using various numerical studies.

결합 다단계 일반화 선형모형을 이용한 다변량 경시적 자료 분석 (The Use of Joint Hierarchical Generalized Linear Models: Application to Multivariate Longitudinal Data)

  • 이동환;유재근
    • 응용통계연구
    • /
    • 제28권2호
    • /
    • pp.335-342
    • /
    • 2015
  • 경시적 자료는 각 환자마다 시간에 따라 반복 측정되는 코호트 연구 등에서 많이 쓰인다. 본 연구는 반응변수 간 상관성을 고려할 수 있는 결합 다단계 일반화 선형모형을 이용하여, 다변량 경시적 자료 분석을 수행하였다. 한국 유전체 역학 연구에서 실시한 코호트 자료를 적합하고 결과를 해석한다. 조건부 아카이케 정보 기준을 이용하여 모형 선택을 하고, 변량효과들의 추정치들을 설명한다.

Small Area Estimation Techniques Based on Logistic Model to Estimate Unemployment Rate

  • Kim, Young-Won;Choi, Hyung-a
    • Communications for Statistical Applications and Methods
    • /
    • 제11권3호
    • /
    • pp.583-595
    • /
    • 2004
  • For the Korean Economically Active Population Survey(EAPS), we consider the composite estimator based on logistic regression model to estimate the unemployment rate for small areas(Si/Gun). Also, small area estimation technique based on hierarchical generalized linear model is proposed to include the random effect which reflect the characteristic of the small areas. The proposed estimation techniques are applied to real domestic data which is from the Korean EAPS of Choongbuk. The MSE of these estimators are estimated by Jackknife method, and the efficiencies of small area estimators are evaluated by the RRMSE. As a result, the composite estimator based on logistic model is much more efficient than others and it turns out that the composite estimator can produce the reliable estimates under the current EAPS system.

위계선형모형을 이용한 개인의 정보화 격차 결정요인 (Determinants of the Digital Divide using Hierarchical Generalized Linear Model)

  • 김미영;최영찬
    • 농촌계획
    • /
    • 제14권3호
    • /
    • pp.63-73
    • /
    • 2008
  • The purpose of this study is to analyze the determinants of the digital divide at individual level and regional level in Korea, considering interaction between individual and the regional variables. Following results are obtained. First, individual level digital devide in the 16 different regions has been found in terms of Internet use, implying the needs for further analysis on impact of the regional factor in individual Internet use. Second, the result finds the impact of level-l individual variables, "gender, age, education, income and jobs" on digital divide, significantly at level 10% level. Third, the regional variables influencing the individual digital divide were not found at state level. However, regional factors might affect digital devide at county level. Study suggest some plans to reduce digital divide. First, the digital devide at individual level should be remedied by focusing on neglected class of people. Second, we need to approach the digital divide by analyzing in more detail, reflecting interactions of the regional variables and individual variables. Third, we should come up with a policy for mending the digital divide at regional level.

A HGLM framework for Meta-Analysis of Clinical Trials with Binary Outcomes

  • Ha, Il-Do
    • Journal of the Korean Data and Information Science Society
    • /
    • 제19권4호
    • /
    • pp.1429-1440
    • /
    • 2008
  • In a meta-analysis combining the results from different clinical trials, it is important to consider the possible heterogeneity in outcomes between trials. Such variations can be regarded as random effects. Thus, random-effect models such as HGLMs (hierarchical generalized linear models) are very useful. In this paper, we propose a HGLM framework for analyzing the binominal response data which may have variations in the odds-ratios between clinical trials. We also present the prediction intervals for random effects which are in practice useful to investigate the heterogeneity of the trial effects. The proposed method is illustrated with a real-data set on 22 trials about respiratory tract infections. We further demonstrate that an appropriate HGLM can be confirmed via model-selection criteria.

  • PDF

혼합효과모형의 리뷰 (Review of Mixed-Effect Models)

  • 이영조
    • 응용통계연구
    • /
    • 제28권2호
    • /
    • pp.123-136
    • /
    • 2015
  • 관측 가능한 변수들 사이의 관계를 묘사한 갈릴레오의 물리학 법칙 발견 이후, 과학은 큰 성과를 거두며 발전해왔다. 그러나, 관측할 수 없는 변량효과를 함께 이용하여 더 많은 자연 현상을 설명할 수 있게 되었고, 이를 이용한 최초의 통계적 모형인 혼합효과모형이 소개되었다. 계산기술의 발달과 더불어 복잡한 현상에 대한 추론을 위하여 혼합효과모형은 그 중요성이 더욱 커지고 있다. 이러한 혼합효과모형은 최근 다단계 일반화 선형모형을 포함한 여러 모형으로 확장되었으며, 관측할 수 없는 변량효과를 추론하기 위한 다단계 가능도가 제시되었다. 혼합효과모형 특집호를 통해 이러한 모형들이 여러 통계학적 문제점을 해결하는 과정을 제시하고, 앞으로 어떤 확장이 추가적으로 요구되는 지에 대하여 논할 것이다. 빈도록적 접근법과 베이지안 접근법을 함께 다룬다.

Empirical Bayes Estimate for Mixed Model with Time Effect

  • Kim, Yong-Chul
    • Communications for Statistical Applications and Methods
    • /
    • 제9권2호
    • /
    • pp.515-520
    • /
    • 2002
  • In general, we use the hierarchical Poisson-gamma model for the Poisson data in generalized linear model. Time effect will be emphasized for the analysis of the observed data to be collected annually for the time period. An extended model with time effect for estimating the effect is proposed. In particularly, we discuss the Quasi likelihood function which is used to numerical approximation for the likelihood function of the parameter.