본 논문에서는 인터넷 애플리케이션 트래픽 분류방법으로 대표되는 포트 번호 및 페이로드 정보를 이용하는 방법론의 한계점을 극복하는 대안으로서, SVM을 기반으로 한 계층적 인터넷 애플리케이션 트래픽 분류 시스템을 제안한다. 제안된 시스템은 이진 분류기인 SVM과 단일클래스 SVM의 대표적 모델인 SVDD를 계층적으로 결합한 새로운 트래픽 분류 모델로서, 학내에서 수집된 양방향 트래픽 플로우 데이터에 대한 최적의 속성 부분집합을 선택한 후, P2P 트래픽과 non-P2P 트래픽을 빠르게 분류하는 첫 번째 계층, P2P 트래픽들을 파일공유, 메신저, TV로 분류하는 두 번째 계층, 그리고 전체 16가지 애플리케이션 트래픽별로 세분화 분류하는 세 번째 계층으로 구성된다. 제안된 시스템은 인터넷 애플리케이션 트래픽을 coarse 혹은 fine하게 분류함으로써 효율적인 시스템의 자원 관리, 안정적인 네트워크 환경의 지원, 원활한 대역폭의 사용, 그리고 적절한 QoS를 보장할 수 있다. 또한, 새로운 애플리케이션 트래픽이 추가되더라도 전체 시스템을 재학습시킬 필요 없이 새로운 애플리케이션 트래픽만을 추가 학습함으로써 시스템의 점증적 갱신 및 확장성도 가능하다. 실험을 통하여 제안된 시스템의 성능을 검증한다.
저출산 고령사회에 대비하기 위해서는 중학교 시기부터 전생애적 관점에서 자신의 진로를 설계하여 미래를 준비할 수 있는 역량을 길러주는 것이 중요하다. 따라서 이 연구에서는 2009개정 교육과정에 따른 중학교 기술 가정 교과서 (1). (2)권 총 24종에 직업 내용이 제시되어 있는 양상을 분석하였다. 교과서에 제시된 직업의 종류는 한국표준직업분류(대분류)를 근거로 하여 유형별로 빈도(비율)를 분석하였고, 교과서 단원별, 자료유형별 직업내용 제시 경향을 함께 분석하여 직업내용을 다양한 관점에서 이해할 수 있는 기초 자료를 제공하였다. 연구 결과 중학교 기술 가정 교과서에 제시된 직업명은 한국직업사전 상 제시된 직업의 5.27% 수준의 정보를 제공하고 있으며, 특히 한국표준직업분류(대분류) 유형 중 '2.전문가 및 관련종사자'에 편중되어 있어 저출산 고령사회에 대비하여 학생들이 진로 설계를 하는데 필요한 직업과 관련된 정보를 제공하는 데는 한계가 있다. 그리고 교과서 별로 '가정생활' 대영역이 '기술의 세계'에 비해 상대적으로 높은 비율로 직업 내용을 제시하였는데, 출판사별, 대영역별, 단원별로 직업내용 제시의 빈도(비율)에 있어 큰 차이를 보이고 있었다. 향후 저출산 고령사회를 대비하는 관점에서 중학교 기술 가정 교과서는 중학생들이 모든 직업을 소중하게 생각하며 자신의 적성과 흥미를 고려하여 진로를 탐색하며 미래를 준비하는 역량을 향상시킬 수 있도록 다양한 직업 관련학습 기회를 제공할 필요가 있다.
본 논문은 연구 학습 주제 지식베이스를 통한 소셜컴퓨팅 지원에 관한 연구로 두 가지 하부 연구로 구성되었다. 첫 번째 연구는 다양한 학문분야에서 전자 도서관 이용자들의 연구 및 학습 주제를 추출하기 위해 분야별로 분류가 잘 되어 있는 NDLTD Union catalog의 석박사 학위 논문 (Electronic Theses and Dissertations : ETDs)을 분석하여 계층적 지식베이스를 구축하는 연구이다. 석박사 학위 논문 이외에 ACM Transactions 저널의 논문과 컴퓨터 분야 국제 학술대회 웹사이트도 추가로 분석하였는데 이는 컴퓨팅 분야의 보다 세분화된 지식베이스를 얻기 위해서이다. 계층적 지식베이스는 개인화 서비스, 추천시스템, 텍스트 마이닝, 기술기회탐색, 정보 가시화 등의 정보서비스와 소셜컴퓨팅에 유용하게 사용될 수 있다. 본 논문의 두 번째 연구 부분에서는 우리가 만든 계층적 지식기반을 활용하여 4개의 사용자 커뮤니티 마이닝 알고리즘 중에서 우리가 수행중인 소셜 컴퓨팅 연구, 즉 구성원간의 결합도에 기반한 추천시스템에 최상의 성능을 보이는 그룹핑 알고리즘을 찾는 성능 평가 연구 결과를 제시하였다. 우리는 이 논문을 통해서 우리가 제안하는 연구 학습 주제 데이터베이스를 사용하는 방법이 기존에 사용자 커뮤니티 마이닝을 위해 사용되던 비용이 많이 필요하고, 느리며, 개인정보 침해의 위험이 있는 인터뷰나 설문에 기반한 방법을 자동화되고, 비용이 적게 들고, 빠르고, 개인정보 침해 위험이 없으며, 반복 수행시에도 일관된 결과를 보여주는 방법으로 대체할 수 있음을 보이고자 한다.
본 연구의 목적은 외식조리전공의 국내 학문분류체계의 문제점을 파악하고, 국내 및 국외 학문분류체계를 비교하는데 있다. 국내 외 비교는 외식산업 경영 학문에 초점을 맞춰 비교하고자 하였다. 본 연구에서는 2차 자료를 이용한 연구에서 유용한 내용분석 방법이 적용되어 국내의 한국학술진흥재단과 한국과학재단, 국외의 미국 국립과학재단(National Science Foundation)과 오라클사(Oracle Corporation), 캐나다의 NSERC(Natural Science and Engineering Research Council), 호주 통계청(Australian Bureau of Statistics)을 분석하였다. 분석 결과, 외식조리 관련전공의 국내의 분류체계는 단계별 계층적 차이에 근거하여 명시되어 있었고, 국외는 대등한 조건의 명칭적 분류로 명시되어 있었다. 본 연구는 향후 외식조리 관련 전공의 효과적인 학문적 분류를 위한 최초의 연구로서 의미가 있다.
국가 경제를 이끌고 있는 하이테크 산업은 일반 건축물에 비해 투자비 규모가 크고 공사 기간이 짧으며 지속적인 투자가 필요한 특성으로 인하여 정확한 공사비 예측과 빠른 의사결정은 효율적인 비용 및 공정 관리를 위한 중요한 요소이다. 국외의 경우, 1980년부터 건설정보 분류체계 표준화를 시행하고 지속적인 발전을 이루어, 체계적으로 프로젝트 전 생애 주기 정보를 수집·활용하는 등 건설 생산성을 향상시키고 있다. 반면, 국내의 건설 현장에서는 건설정보 분류체계의 표준화를 위한 시도들이 있었으나, 표준화 주체의 부재, 건설사별 비용 및 공정관리 방식의 차이로 인한 지속적인 표준화 및 체계화가 이루어지는 데 어려움을 겪고 있다. 특히 하이테크 산업의 경우, 큰 규모, 수많은 공종, 복잡한 공사, 보안 등의 문제로 인하여 하이테크 공장 건설을 위한 건설정보 분류체계 표준화·체계화 수준이 매우 낮다. 따라서 본 연구의 목적은 국내 건설된 관련 프로젝트 데이터를 수집·분류·분석을 통하여 하이테크 공장 건설에 적합한 건설정보 분류체계를 구성하는 데 있다. 본 연구를 통해 분류·분석된 WBS(Work Breakdown Structure)·CBS(Cost Breakdown Structure)를 기반으로 계층적 구분을 통한 코드체계를 제안하였고, WBS와 CBS를 연계를 통한 건축물의 비용 모델을 입체화 및 활용 방법을 제시하였다. 이를 통하여, 일반적인 건설정보 구분 체계인 일 방향의 트리구조를 벗어나 상호 관계성을 기반으로 한 정보 분류체계가 가능하여, 공사 기간 단축 및 비용 절감 등 효과를 극대할 수 있을 것이다.
본 논문에서는 NEMO 환경에서 핸드오버를 통해 발생할 수 있는 이동 시나리오의 정의와 핸드오버 실패시의 지연 및 패킷 손실과 전송비용의 분석을 목적으로 한다. 이를 위해 네트워크 노드의 이동성을 지원하며 핸드오버 절차의 성능향상을 위한 메커니즘 중 하나인 빠른 핸드오버 (FMIPv6)와 계층적 이동 IPv6 구조 (HMIPv6)가 NEMO와 결합했을 때 발생할 수 있는 네트워크 개체의 다양한 이동 시나리오를 분류하고, 각 시나리오에서의 핸드오버 실패의 경우를, 빠른 핸드오버 절차에 기반한 시점을 기준으로 정의하였으며 이동 네트워크 개체의 핸드오버가 실패했을 경우 절차를 완료하는데 필요한 지연 및 그 시간 동안의 패킷 손실과 전송비용 측면에서 분석했다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제6권7호
/
pp.1735-1755
/
2012
Wireless sensor networks (WSNs) are becoming increasingly attractive for a variety of applications and have become a hot research area. Routing is a key technology in WSNs and can be coarsely divided into two categories: flat routing and hierarchical routing. In a flat topology, all nodes perform the same task and have the same functionality in the network. In contrast, nodes in a hierarchical topology perform different tasks in WSNs and are typically organized into lots of clusters according to specific requirements or metrics. Owing to a variety of advantages, clustering routing protocols are becoming an active branch of routing technology in WSNs. In this paper, we present an overview on clustering routing algorithms for WSNs with focus on differentiating them according to diverse cluster shapes. We outline the main advantages of clustering and discuss the classification of clustering routing protocols in WSNs. In particular, we systematically analyze the typical clustering routing protocols in WSNs and compare the different approaches based on various metrics. Finally, we conclude the paper with some open questions.
In many cases, clustering algorithms have been used for extracting and discovering useful information from non-linear data. They have made a great effect on performances of the systems dealing with non-linear data. Thus, this paper presents a new approach called hierarchically structured clustering algorithm, and it is applied to the prediction system for non-linear time series data. The proposed hierarchically structured clustering algorithm (called HCKA: Hierarchical Cross-correlation and K-means clustering Algorithms) in which the cross-correlation and k-means clustering algorithm are combined can accept the correlationship of non-linear time series as well as statistical characteristics. First, the optimal differences of data are generated, which can suitably reveal the characteristics of non-linear time series. Second, the generated differences are classified into the upper clusters for their predictors by the cross-correlation clustering algorithm, and then each classified differences are classified again into the lower fuzzy sets by the k-means clustering algorithm. As a result, the proposed method can give an efficient classification and improve the performance. Finally, we demonstrates the effectiveness of the proposed HCKA via typical time series examples.
Mechanical parts are often grouped into part families based on the similarity of their shapes, to support efficient manufacturing process planning and design modification. The 2-part sequence papers present similarity assessment techniques to support part family classification for machined parts. These exploit the multiple feature decompositions obtained by the feature recognition method using convex decomposition. Convex decomposition provides a hierarchical volumetric representation of a part, organized in an outside-in hierarchy. It provides local accessibility directions, which supports abstract and qualitative similarity assessment. It is converted to a Form Feature Decomposition (FFD), which represents a part using form features intrinsic to the shape of the part. This supports abstract and qualitative similarity assessment using positive feature volumes.. FFD is converted to Negative Feature Decomposition (NFD), which represents a part as a base component and negative machining features. This supports a detailed, quantitative similarity assessment technique that measures the similarity between machined parts and associated machining processes implied by two parts' NFDs. Features of the NFD are organized into branch groups to capture the NFD hierarchy and feature interrelations. Branch groups of two parts' NFDs are matched to obtain pairs, and then features within each pair of branch groups are compared, exploiting feature type, size, machining direction, and other information relevant to machining processes. This paper, the second one of the two companion papers, describes the similarity assessment method using NFD.
Mechanical parts are often grouped into part families based on the similarity of their shapes, to support efficient manufacturing process planning and design modification. The 2-part sequence papers present similarity assessment techniques to support part family classification for machined parts. These exploit the multiple feature decompositions obtained by the feature recognition method using convex decomposition. Convex decomposition provides a hierarchical volumetric representation of a part, organized in an outside-in hierarchy. It provides local accessibility directions, which supports abstract and qualitative similarity assessment. It is converted to a Form Feature Decomposition (FFD), which represents a part using form features intrinsic to the shape of the part. This supports abstract and qualitative similarity assessment using positive feature volumes. FFD is converted to Negative Feature Decomposition (NFD), which represents a part as a base component and negative machining features. This supports a detailed, quantitative similarity assessment technique that measures the similarity between machined parts and associated machining processes implied by two parts' NFDs. Features of the NFD are organized into branch groups to capture the NFD hierarchy and feature interrelations. Branch groups of two parts' NFDs are matched to obtain pairs, and then features within each pair of branch groups are compared, exploiting feature type, size, machining direction, and other information relevant to machining processes. This paper, the first one of the two companion papers, describes the similarity assessment methods using convex decomposition and FFD.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.