• Title/Summary/Keyword: Hierarchical Classification

Search Result 395, Processing Time 0.035 seconds

Hierarchical Part Classification System based on Statistical Characteristic and Template (통계적 특징 및 템플리트 기반의 계층적 부품 분류 시스템)

  • 이영길;안성규;곽병덕;정성환
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 1998.10a
    • /
    • pp.278-281
    • /
    • 1998
  • 본 논문에서는 다양한 모양의 부품 영상을 CCD카메라로 입력 받아 부품 영상에 포함된 부품의 내용 정보를 이용하여 부품을 분류하는 계층적 부품 분류 시스템을 구현하였다. 제안된 시스템은 부품 영상에 대해서 통계적 방법과 템플리트를 계층적으로 적용하여 부품을 분류하는 시스템이다. 2,000개의 부품 영상을 이용하여 실험한 결과, 84%의 분류율을 보였다.

  • PDF

Understanding Statistical Terms: A Study with Secondary School and University Students

  • Garcia Alonso, Israel;Garcia Cruz, Juan Antonio
    • Research in Mathematical Education
    • /
    • v.14 no.2
    • /
    • pp.143-172
    • /
    • 2010
  • In this paper, we present an analysis of how students understand some statistical terms, mainly from inferential statistics, which are taught at the high school level. We focus our analysis on those terms that present more difficulties and are persistent in spite of having been studied until the college level. This analysis leads us to a hierarchical classification of responses at different levels of understanding using the SOLO theoretical framework.

Software certification based on hierarchical classification of software (소프트웨어의 계층적 분류에 기반한 품질 인증)

  • 박동철;김순용;이상덕;오재원;이종원;우치수
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.13-15
    • /
    • 2002
  • 오늘날 소프트웨어는 개발 방법론을 이용하여 양적으로나 질적으로 많은 발전이 이루어졌다. 이와 더불어 소프트웨어에 대한 소비자들의 요구와 지식 수준 또한 같이 높아짐으로써 소프트웨어 인증에 대한 관심과 인식도 같이 높아지고 있는 추세이다. 본 논문에서는 소프트웨어 품질 인증을 위한 메타 모델의 필요성을 알아보고 기존 연구[1]되었던 메타 모델의 개념 수준을 더욱 발전시켰다. 그리고 간단하지만 실질적인 예제를 통해서 메타 모델과 인증 모델, 인증 프로그램과의 관계를 명확하게 정립하고자 한다.

  • PDF

A Text Classification System for Hierarchical Categories (계층구조 카테고리를 가지는 텍스트 분류 시스템)

  • 박지호;김진상
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10b
    • /
    • pp.128-130
    • /
    • 2000
  • 인터넷의 발전으로 온라인 문서들의 양이 급증하여 문서의 자동 분류 기술의 중요성이 증대되고 있다. 문서를 미리 정의된 카테고리로 분류할 때 카테고리는 평면구조보다 계층구조를 갖도록 하는 것이 사용자의 측면에서 볼 때 훨씬 더 자연스럽다. 본 논문에서는 계층구조 카테고리를 가지는 문서를 분류하는 방법을 연구하고 실제 20개의 유스넷 뉴스그룹 문서들을 분류하도록 시험하였다. 여기서 사용한 알고리즘은 하이퍼링크 정보를 이용하여 웹 문서분류를 목적으로 개발된 IBM의 TAPER(taxonomy and path enhanced retrieval system) 알고리즘을 변형한 것이다.

  • PDF

The Performance Improvement of Speech recognition system using Hierarchical Classification Method (대분류기법을 이용한 음성인식 시스템의 속도향상)

  • 전화성;김길연;윤영선;오영환
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10b
    • /
    • pp.476-478
    • /
    • 2000
  • 본 논문에서는 HMM 학습모델을 이용하여 1445단어 음성인식기를 구현하고, 대분류기법을 이용하여 그 성능을 향상시키는 방법에 대하여 연구를 수행하였으며, 속도개선에 중점을 두었다. 속도개선을 위해서 HMM모델에 계층적 대분류 기법을 적용시켰다. HMM의 상태수가 많을수록 속도가 저하된다는 점을 고려하여, 적은 상태수의 HMM모델로 후보를 정하고, 가변적으로 해당하는 상태수의 HMM모델로 목적단어를 인식하는 방법을 제안하였다. 후보를 정하는 방법을 후보수와 특징파라미터의 종류와 수를 고려하여 다양하게 설정, 실험하여 가장 이상적인 경우를 찾아내었다.

  • PDF

An Experimental Study on Text Categorization for Hierarchical Classification (계층적 분류체계를 위한 자동분류 기법에 관한 연구)

  • 이영숙;정영미
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 2001.08a
    • /
    • pp.173-176
    • /
    • 2001
  • 이 연구는 계층적 분류체계를 기반으로 자동분류를 수행할 HiCat 알고리즘을 제안한다. HiCat 알고리즘은 DDC 지식베이스의 주제어와 기계학습을 거친 정보를 동시에 이용하고, 각 계층별로 주제적합성가중치를 구해 최종 주제범주를 결정한다. 이 알고리즘이 최적의 성능을 보이는 조건을 알아보고, 일반 분류기와의 성능 비교를 통해 HiCat 알고리즘을 평가해 보았다.

  • PDF

Evolutionary Classification of Metabolic Networks by Hierarchical Clustering (클러스터링 기법을 통한 대사 네트웍의 진화적 분류)

  • 오석준;정제균;장병탁
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10c
    • /
    • pp.226-228
    • /
    • 2002
  • 현재 유전자 서열 분석이 완료된 유전체들이 점점 늘어나고 있다. 따라서 이에 대한 방대한 정보가 생성됨에 따라 다양한 생물체들에 대하여 대사 네트웍을 통한 다차원적 분석이 가능하게 되었다. 대사 네트웍은 단백질 또는 효소들의 전체적인 상호작용을 표현하기 때문에 생물학적 메카니즘에 대하여 보다 풍부한 정보를 제공해 준다. 본 논문에서는 일차원적인 유전자 서열에 의한 종의 계통 분류가 아니라 메타 수준의 생리 구조적 비교를 통하여 계통분류학에 대하여 새로운 방법의 접근을 제안하고자 한다. 제안된 방법은 기존의 상동성 비교에 의한 계통 분류와 함께 좀 더 포괄적이고 거시적인 분석을 가능하게 한다.

  • PDF

Medical Image Classification based on Hierarchical CNN Model (계층적 형태의 Convolutional Neural Network를 이용한 의료영상 분류 알고리즘)

  • Lee, Sang-Hyuk;Han, Jong-Ki
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.06a
    • /
    • pp.248-249
    • /
    • 2018
  • 본 논문에서는 고해상도 자궁 내막 세포들을 대상으로 정상세포와 이상세포들을 구별하기 위한 알고리즘을 제안한다. 구체적으로 계층적 구조를 갖는 Convolutional Neural Network (CNN) 모델을 기반으로 네 가지 세포들을 구분하는 알고리즘을 제안한다. 이 연구에서 고해상도 영상을 분류하면서도 복잡도 증가를 막기 위해 효율적인 전처리 과정을 사용하였다. 다양한 컴퓨터 실험을 통하여 제안하는 기술을 사용할 때, 인식률이 향상되는 것을 확인할 수 있었다.

  • PDF

Classification using Hierarchical Sampling in Large Classification System (대규모 분류 체계에서 계층적 샘플링을 활용한 문서의 분류)

  • Hong, SungMo;Jang, HeonSeok;Kang, Inho
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.51-55
    • /
    • 2017
  • 대규모 분류체계를 사용하는 경우, 기존 방법의 딥 러닝으로는 분류 정확도가 현저히 떨어진다. 이를 해결하기 위해 계층 구조를 활용한 네거티브 샘플링 방법을 제안한다. 학습 문서가 속한 카테고리의 상위 카테고리와 일정부분 겹치는 범위에서 네거티브 샘플을 선택하면, 하나의 큰 문제를 다수개의 하위 문제로 쪼개서 해결하는 학습 효과가 있다. 소규모 분류 체계와 대규모 분류체계 각각에서 샘플링 전략을 차용하였을 때를 비교한 결과, 대규모에서 효과가 좋았으며 그 때의 정확도가 150배 이상 차이가 나는 것을 보였다.

  • PDF

An Effective Clustering Procedure for Quantitative Data and Its Application for the Grouping of the Reusable Nuclear Fuel (정량적 자료에 대한 효과적인 군집화 과정 및 사용 후 핵연료의 분류에의 적용)

  • Jing, Jin-Xi;Yoon, Bok-Sik;Lee, Yong-Joo
    • IE interfaces
    • /
    • v.15 no.2
    • /
    • pp.182-188
    • /
    • 2002
  • Clustering is widely used in various fields in order to investigate structural characteristics of the given data. One of the main tasks of clustering is to partition a set of objects into homogeneous groups for the purpose of data reduction. In this paper a simple but computationally efficient clustering procedure is devised and some statistical techniques to validate its clustered results are discussed. In the given procedure, the proper number of clusters and the clustered groups can be determined simultaneously. The whole procedure is applied to a practical clustering problem for the classification of reusable fuels in nuclear power plants.