The objective of this study was to identify the texture-related components of woven fabrics and to develop a multidimensional perceptual structure map to represent the tactile textures. Eighty subjects in clothing and tektite industries were selected for multivariate data on each fabric of 30 using the questionnaire with 9 pointed semantic differential scales of 20 texture-related adjectives. Data were analyzed by factor analysis, hierarchical cluster analysis, and multidimensional scaling(MDS) using SPSS statistical package. The results showed that the five factors were selected and composed of density/warmth-coolness, stiffness, extensibility, drapeability, and surface/slipperiness. As a result of hierarchical cluster analysis, 30 fabrics were grouped by four clusters; each cluster was named with density/warmth-coolness, surface/slipperiness, stiffness, and extensibility, respectively. By MDS, three dimensions of tactile texture were obtained and a 3-dimensional perceptual structure map was suggested. The three dimensions were named as surface/slipperiness, extensibility, and stiffness. We proposed a positioning perceptual map of fabrics related to texture naming system(TNS). To classify the textural features of the woven fabrics, hierarchical cluster analysis containing all the data variations, even though it includes the errors, may be more desirable than texture-related multidimensional data analysis based on factor loading values in respect of the effective variables reduction without losing the critical variations.
기존 텍스트 감성 분석 모델에서는 일반적으로 전체 텍스트를 직접 모델링하고, 텍스트 내용 간의 계층적 관계를 덜 고려한다. 그러나 감정분석의 구현에서는 많은 텍스트가 여러 감정으로 뒤섞여 있다. 전체의 의미론적 모델링을 직접 수행하면 감성분석 모델의 판단 난도가 높아져 혼합 감정 문장의 분류에 적용하기 어려울 수 있다. 따라서 본 논문에서는 텍스트 계층을 고려한 감성 분석 모델 BHGCN을 제안한다. 이 모델에서는 BERT의 각 레이어의 숨겨진 상태의 출력이 노드로 사용되며, 상위 레이어와 하위 레이어 사이에 직접 연결이 이루어져 의미 계층이 있는 그래프 네트워크를 구축한다. BHGCN 모델은 계층별 의미론에 주의를 기울일 뿐만 아니라 계층적 관계에도 주의를 기울이기 때문에 혼합 감성 분류 작업을 처리하는 데 적합하다. 본 논문에서는 비교 실험을 통해 제안하는 BHGCN 모델이 명백한 경쟁 우위를 보인다는 것을 입증하였다.
For the design of suitable aquatic habitats and habitat management purposes, sensitive descriptors for aquatic areas were identified and analyzed. The classification system of the aquatic areas were developed for natural streams and modified streams in Korea. Relationships among the descriptors of an aquatic area such as channel width, meander wave length, and arc angle have been defined. The analysis indicates that the total mean sinuosity is 1.25 for the main channels of natural streams, whereas the mean value of the sinuosity of modified streams is 1.14. The mean values of the total area, the width, and the length for the sandbars of natural streams are larger than those of modified streams.
This paper describes a hierarchical structure for feature definition and classification, and feature representation method based on frame structure for process planning of prismatic machined components of injection mold. The concept of Volume Removal Directions and Vertical Faces is proposed to develop a method to define and to classify features for components of injection mold systematically. A method for classifying features by the combination of volume removal directions and vertical faces is developed, and also a feature representation method by using frame structure to represent design and manufacturing information is presented.
최근 정부산하공공기관은 "공공기록물 관리에 관한 법률" 시행령에 따라 기록관리기준표를 도입하기 위해 분류체계를 정비하고 있다. 하지만 정비한 기록관리기준표를 탑재할 시스템이 부재하여 활용성에 문제가 있다. 본 연구는 고유의 미션을 가진 정부산하공공기관을 대상으로 기록관리의 토대가 되는 분류체계를 관리 할 수 있는 분류체계관리시스템 기능 설계를 목적으로 수행되었다. 기능 설계를 위해 5개 정부산하공공기관 기록물전문 요원과의 심층면담을 수행하였고, 이를 토대로 다양한 분류체계 등록 기능, 집합체 계층 구조 설정 기능, 기록관리기준 관리 기능을 설계하였다.
분류 활동은 개념 형성과 직결되는 중요한 활동이다. 따라서 분류는 학습자 중심적인 교수를 통해 의미 충실한 학습이 이루어질 필요가 있다. 하지만 분류와 관련한 교수 학습이 '학습자 중심'이라는 구성주의 철학을 잘 반영하고 있을지 의구심이 제기된다. 이에 본 연구에서는 각과 삼각형의 분류와 관련한 초등 교과서 및 교사용지도서의 내용을 구성주의의 관점에서 비판적으로 분석해 보았다. 그 결과 각의 분류에서는 공동체의 합의에 의한 합리적 기준 설정의 기회가 제공되지 않는 문제점이 있었다. 삼각형의 분류는 다양성의 측면에서 다소 급진적인 형태를 띠고 있다는 문제점이 있었다. 또한 삼각형의 분류는 학생 반응 예측에서 이미 그 지식을 습득한 사람에게나 가능한 반응을 제안하는 경우를 접할 수 있었다. 그리고 계층적 분할적 분류에 대한 선택과 논의의 기회가 제공되지 않는 단점을 지니고 있었다. 이러한 특징을 바탕으로 '학습자 중심' 원칙의 충실한 반영, 학생 반응에 대한 신중한 예측, 결과보다 과정에 주목하는 교수를 지향할 것을 제안하였다.
The purpose of this study is to improve the classification accuracy compared to the existing InceptionV3 model by proposing a new model modified with the fully connected hierarchical structure of InceptionV3, which showed excellent performance in medical image classification. The data used for model training were trained after data augmentation on a total of 1026 chest X-ray images of patients diagnosed with normal heart and Cardiomegaly at Kyungpook National University Hospital. As a result of the experiment, the learning classification accuracy and loss of the InceptionV3 model were 99.57% and 1.42, and the accuracy and loss of the proposed model were 99.81% and 0.92. As a result of the classification performance evaluation for precision, recall, and F1 score of Inception V3, the precision of the normal heart was 78%, the recall rate was 100%, and the F1 score was 88. The classification accuracy for Cardiomegaly was 100%, the recall rate was 78%, and the F1 score was 88. On the other hand, in the case of the proposed model, the accuracy for a normal heart was 100%, the recall rate was 92%, and the F1 score was 96. The classification accuracy for Cardiomegaly was 95%, the recall rate was 100%, and the F1 score was 97. If the chest X-ray image for normal heart and Cardiomegaly can be classified using the model proposed based on the study results, better classification will be possible and the reliability of classification performance will gradually increase.
본 논문에서는 음악 장르 분류를 위한 새로운 자동 Taxonomy 구축 알고리즘을 제안한다. 제안된 알고리즘은 모든 가능한 노드들의 분류 확률을 예측하여 예측된 분류 성능값이 가장 좋은 조합을 Taxonomy로 구축하는 것이다. 제안된 알고리즘에서의 분류 확률 예측은 훈련 데이터를 k-fold cross validation을 이용하여 분류기에 적용함으로써 이루어진다. 제안된 알고리즘을 기반으로 한 분류 성능 측정은 2 클래스로 이루어진 각각의 노드에 2개 범주 분류에 효과적인 support vector machine을 적용함으로써 이루어진다. 제안된 알고리즘의 성능 검증을 위해 음색, 리듬, 피치 등 오디오 신호의 특징을 나타내는 다양한 파라미터를 오디오 신호로부터 추출하여 제안된 알고리즘과 기존의 다중 범주 분류기들을 이용하여 분류성능을 평가하였다. 다양한 실험결과 제안된 알고리즘은 기존의 알고리즘에 비하여 5%에서 25%정도의 분류 성능이 향상된 것을 확인할 수 있었고 특히 낮은 차원의 특징벡터를 이용한 분류 실험에서는 10% 에서 25% 향상된 좋은 성능을 보였다.
The research on chromosomes is very significant in cytogenetics since genes of the chromosomes control revelation of the inheritance plasma. The human chromosome analysis is widely used to study leukemia, malignancy, radiation hazard, and mutagen dosimetry as well as various congenital anomalies such as Down's, Klinefelter's, Edward's, and Patau's syndrome. The framing and analysis of the chromosome karyogram, which requires specific cytogenetic knowledge is most important in this field. Many researches on automated chromosome karyotype analysis methods have been carried out, some of which produced commercial systems. However, there still remains much room to improve the accuracy of chromosome classification and to reduce the processing time in real clinic environments. In this paper, we proposed a hierarchical artificial neural network(HANN) to classify the chromosome karyotype. We extracted three or four chromosome morphological feature parameters such as centromeric index, relative length ratio, relative area ratio, and chromosome length by preprocessing from ten human chromosome images. The feature parameters of five human chromosome images were used to learn HANN and the rest of them were used to classify the chromosome images. The experiment results show that the chromosome classification error is reduced much more than that of the other researchers using less feature parameters.
본 논문은 단순한 후반부 구조를 가진 퍼지 모델을 계층적 구조로 결합한 퍼지 패턴 분류기를 제안한다. 계층적 구조를 가진 퍼지 패턴 분류기의 기본 구조는 단순한 후반부 구조를 가진 퍼지 모델을 사용하여 전체 패턴 분류기의 구조적 복잡성을 높이지 않도록 설계 하였다. 입력공간을 계층적으로 분할하기 위하여 대표적인 퍼지 클러스터링 알고리즘인 Fuzzy C-Means clustering 기법을 이용하였다. 분할된 퍼지 입력 공간의 하위 구조를 분석하기 위하여 conditional Fuzzy C-Means 클러스터링 기법을 이용하였다. 계층적으로 분할된 퍼지 입력공간에 간단한 구조를 가진 퍼지 패턴 분류기를 적용하여 계층적 구조를 가진 패턴 분류기를 설계한다. 계층적으로 퍼지 모델들을 결합함으로써 입력 공간의 정보 분석을 거시적인 관점에서 시작하여 세부적으로 분석이 가능하게 되었다. 제안된 퍼지 패턴 분류기의 성능을 평가하기 위하여 다양한 기계 학습 데이터를 사용하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.