• Title/Summary/Keyword: Hierarchical Bayesian inference

Search Result 26, Processing Time 0.024 seconds

User Adaptive Restaurant Recommendation Service in Mobile Environment based on Bayesian Network Learning (베이지안 네트워크의 학습에 기반한 모바일 환경에서의 사용자 적응형 음식점 추천 서비스)

  • Kim, Hee-Taek;Cho, Sung-Bae
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.6-10
    • /
    • 2009
  • In these days, recommendation service in mobile environments is in the limelight due to the spread of mobile devices and an increase of information owing to advancement of computer network. The restaurant recommendation system reflecting user preference was proposed. This system uses Bayesian network to model user preference and analytical hierarchical process to recommend restaurants, but static inference model for user preference used in the system has some limitations that cannot manage changing user preference and enormous user survey must be preceded. This paper proposes a learning method for Bayesian network based on user requests. The proposed method is implemented on mobile devices and desktop, and we show the possibility of the proposed method through experiments.

  • PDF

Bayesian Methods for Wavelet Series in Single-Index Models

  • Park, Chun-Gun;Vannucci, Marina;Hart, Jeffrey D.
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.83-126
    • /
    • 2005
  • Single-index models have found applications in econometrics and biometrics, where multidimensional regression models are often encountered. Here we propose a nonparametric estimation approach that combines wavelet methods for non-equispaced designs with Bayesian models. We consider a wavelet series expansion of the unknown regression function and set prior distributions for the wavelet coefficients and the other model parameters. To ensure model identifiability, the direction parameter is represented via its polar coordinates. We employ ad hoc hierarchical mixture priors that perform shrinkage on wavelet coefficients and use Markov chain Monte Carlo methods for a posteriori inference. We investigate an independence-type Metropolis-Hastings algorithm to produce samples for the direction parameter. Our method leads to simultaneous estimates of the link function and of the index parameters. We present results on both simulated and real data, where we look at comparisons with other methods.

  • PDF

A Bayesian inference for fixed effect panel probit model

  • Lee, Seung-Chun
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.2
    • /
    • pp.179-187
    • /
    • 2016
  • The fixed effects panel probit model faces "incidental parameters problem" because it has a property that the number of parameters to be estimated will increase with sample size. The maximum likelihood estimation fails to give a consistent estimator of slope parameter. Unlike the panel regression model, it is not feasible to find an orthogonal reparameterization of fixed effects to get a consistent estimator. In this note, a hierarchical Bayesian model is proposed. The model is essentially equivalent to the frequentist's random effects model, but the individual specific effects are estimable with the help of Gibbs sampling. The Bayesian estimator is shown to reduce reduced the small sample bias. The maximum likelihood estimator in the random effects model is also efficient, which contradicts Green (2004)'s conclusion.

Predicting the Effect of Puzzle-based Computer Science Education Program for Improving Computational Thinking (컴퓨팅 사고력 신장을 위한 퍼즐 기반 컴퓨터과학 교육 프로그램의 효과 예측)

  • Oh, Jeong-Cheol;Kim, Jonghoon
    • Journal of The Korean Association of Information Education
    • /
    • v.23 no.5
    • /
    • pp.499-511
    • /
    • 2019
  • The preceding study of this study developed puzzle-based computer science education programs to enhance the computational thinking of elementary school students over 1 to 3 times. The preceding study then applied such programs into the field, categorized the effects of education into CT creativity and CT cognitive ability to improve the education programs. Based on the results of these preceding studies, the hierarchical Bayesian inference modeling was performed using age and CT thinking ability as parameters. From the results, this study predicted the effectiveness of puzzle-based computer science education programs in middle and high schools and proposed major improvement areas and directions for puzzle-based computer science education programs that are to be deployed in the future throughout middle and high schools.

Statistical Inference in Non-Identifiable and Singular Statistical Models

  • Amari, Shun-ichi;Amari, Shun-ichi;Tomoko Ozeki
    • Journal of the Korean Statistical Society
    • /
    • v.30 no.2
    • /
    • pp.179-192
    • /
    • 2001
  • When a statistical model has a hierarchical structure such as multilayer perceptrons in neural networks or Gaussian mixture density representation, the model includes distribution with unidentifiable parameters when the structure becomes redundant. Since the exact structure is unknown, we need to carry out statistical estimation or learning of parameters in such a model. From the geometrical point of view, distributions specified by unidentifiable parameters become a singular point in the parameter space. The problem has been remarked in many statistical models, and strange behaviors of the likelihood ratio statistics, when the null hypothesis is at a singular point, have been analyzed so far. The present paper studies asymptotic behaviors of the maximum likelihood estimator and the Bayesian predictive estimator, by using a simple cone model, and show that they are completely different from regular statistical models where the Cramer-Rao paradigm holds. At singularities, the Fisher information metric degenerates, implying that the cramer-Rao paradigm does no more hold, and that he classical model selection theory such as AIC and MDL cannot be applied. This paper is a first step to establish a new theory for analyzing the accuracy of estimation or learning at around singularities.

  • PDF

A Finite Mixture Model for Gene Expression and Methylation Pro les in a Bayesian Framewor

  • Jeong, Jae-Sik
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.4
    • /
    • pp.609-622
    • /
    • 2011
  • The pattern of methylation draws significant attention from cancer researchers because it is believed that DNA methylation and gene expression have a causal relationship. As the interest in the role of methylation patterns in cancer studies (especially drug resistant cancers) increases, many studies have been done investigating the association between gene expression and methylation. However, a model-based approach is still in urgent need. We developed a finite mixture model in the Bayesian framework to find a possible relationship between gene expression and methylation. For inference, we employ Expectation-Maximization(EM) algorithm to deal with latent (unobserved) variable, producing estimates of parameters in the model. Then we validated our model through simulation study and then applied the method to real data: wild type and hydroxytamoxifen(OHT) resistant MCF7 breast cancer cell lines.

A spatial heterogeneity mixed model with skew-elliptical distributions

  • Farzammehr, Mohadeseh Alsadat;McLachlan, Geoffrey J.
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.3
    • /
    • pp.373-391
    • /
    • 2022
  • The distribution of observations in most econometric studies with spatial heterogeneity is skewed. Usually, a single transformation of the data is used to approximate normality and to model the transformed data with a normal assumption. This assumption is however not always appropriate due to the fact that panel data often exhibit non-normal characteristics. In this work, the normality assumption is relaxed in spatial mixed models, allowing for spatial heterogeneity. An inference procedure based on Bayesian mixed modeling is carried out with a multivariate skew-elliptical distribution, which includes the skew-t, skew-normal, student-t, and normal distributions as special cases. The methodology is illustrated through a simulation study and according to the empirical literature, we fit our models to non-life insurance consumption observed between 1998 and 2002 across a spatial panel of 103 Italian provinces in order to determine its determinants. Analyzing the posterior distribution of some parameters and comparing various model comparison criteria indicate the proposed model to be superior to conventional ones.

The Risk Assessment and Prediction for the Mixed Deterioration in Cable Bridges Using a Stochastic Bayesian Modeling (확률론적 베이지언 모델링에 의한 케이블 교량의 복합열화 리스크 평가 및 예측시스템)

  • Cho, Tae Jun;Lee, Jeong Bae;Kim, Seong Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.5
    • /
    • pp.29-39
    • /
    • 2012
  • The main objective is to predict the future degradation and maintenance budget for a suspension bridge system. Bayesian inference is applied to find the posterior probability density function of the source parameters (damage indices and serviceability), given ten years of maintenance data. The posterior distribution of the parameters is sampled using a Markov chain Monte Carlo method. The simulated risk prediction for decreased serviceability conditions are posterior distributions based on prior distribution and likelihood of data updated from annual maintenance tasks. Compared with conventional linear prediction model, the proposed quadratic model provides highly improved convergence and closeness to measured data in terms of serviceability, risky factors, and maintenance budget for bridge components, which allows forecasting a future performance and financial management of complex infrastructures based on the proposed quadratic stochastic regression model.

Bayesian Analysis for Categorical Data with Missing Traits Under a Multivariate Threshold Animal Model (다형질 Threshold 개체모형에서 Missing 기록을 포함한 이산형 자료에 대한 Bayesian 분석)

  • Lee, Deuk-Hwan
    • Journal of Animal Science and Technology
    • /
    • v.44 no.2
    • /
    • pp.151-164
    • /
    • 2002
  • Genetic variance and covariance components of the linear traits and the ordered categorical traits, that are usually observed as dichotomous or polychotomous outcomes, were simultaneously estimated in a multivariate threshold animal model with concepts of arbitrary underlying liability scales with Bayesian inference via Gibbs sampling algorithms. A multivariate threshold animal model in this study can be allowed in any combination of missing traits with assuming correlation among the traits considered. Gibbs sampling algorithms as a hierarchical Bayesian inference were used to get reliable point estimates to which marginal posterior means of parameters were assumed. Main point of this study is that the underlying values for the observations on the categorical traits sampled at previous round of iteration and the observations on the continuous traits can be considered to sample the underlying values for categorical data and continuous data with missing at current cycle (see appendix). This study also showed that the underlying variables for missing categorical data should be generated with taking into account for the correlated traits to satisfy the fully conditional posterior distributions of parameters although some of papers (Wang et al., 1997; VanTassell et al., 1998) presented that only the residual effects of missing traits were generated in same situation. In present study, Gibbs samplers for making the fully Bayesian inferences for unknown parameters of interests are played rolls with methodologies to enable the any combinations of the linear and categorical traits with missing observations. Moreover, two kinds of constraints to guarantee identifiability for the arbitrary underlying variables are shown with keeping the fully conditional posterior distributions of those parameters. Numerical example for a threshold animal model included the maternal and permanent environmental effects on a multiple ordered categorical trait as calving ease, a binary trait as non-return rate, and the other normally distributed trait, birth weight, is provided with simulation study.

Bayesian parameter estimation of Clark unit hydrograph using multiple rainfall-runoff data (다중 강우유출자료를 이용한 Clark 단위도의 Bayesian 매개변수 추정)

  • Kim, Jin-Young;Kwon, Duk-Soon;Bae, Deg-Hyo;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.5
    • /
    • pp.383-393
    • /
    • 2020
  • The main objective of this study is to provide a robust model for estimating parameters of the Clark unit hydrograph (UH) using the observed rainfall-runoff data in the Soyangang dam basin. In general, HEC-1 and HEC-HMS models, developed by the Hydrologic Engineering Center, have been widely used to optimize the parameters in Korea. However, these models are heavily reliant on the objective function and sample size during the optimization process. Moreover, the optimization process is carried out on the basis of single rainfall-runoff data, and the process is repeated for other events. Their averaged values over different parameter sets are usually used for practical purposes, leading to difficulties in the accurate simulation of discharge. In this sense, this paper proposed a hierarchical Bayesian model for estimating parameters of the Clark UH model. The proposed model clearly showed better performance in terms of Bayesian inference criterion (BIC). Furthermore, the result of this study reveals that the proposed model can also be applied to different hydrologic fields such as dam design and design flood estimation, including parameter estimation for the probable maximum flood (PMF).