• Title/Summary/Keyword: Hidden Markov Model

Search Result 642, Processing Time 0.036 seconds

Vehicle trajectory prediction based on Hidden Markov Model

  • Ye, Ning;Zhang, Yingya;Wang, Ruchuan;Malekian, Reza
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.3150-3170
    • /
    • 2016
  • In Intelligent Transportation Systems (ITS), logistics distribution and mobile e-commerce, the real-time, accurate and reliable vehicle trajectory prediction has significant application value. Vehicle trajectory prediction can not only provide accurate location-based services, but also can monitor and predict traffic situation in advance, and then further recommend the optimal route for users. In this paper, firstly, we mine the double layers of hidden states of vehicle historical trajectories, and then determine the parameters of HMM (hidden Markov model) by historical data. Secondly, we adopt Viterbi algorithm to seek the double layers hidden states sequences corresponding to the just driven trajectory. Finally, we propose a new algorithm (DHMTP) for vehicle trajectory prediction based on the hidden Markov model of double layers hidden states, and predict the nearest neighbor unit of location information of the next k stages. The experimental results demonstrate that the prediction accuracy of the proposed algorithm is increased by 18.3% compared with TPMO algorithm and increased by 23.1% compared with Naive algorithm in aspect of predicting the next k phases' trajectories, especially when traffic flow is greater, such as this time from weekday morning to evening. Moreover, the time performance of DHMTP algorithm is also clearly improved compared with TPMO algorithm.

Condition Monitoring of Rotating Machine with a Change in Speed Using Hidden Markov Model (은닉 마르코프 모델을 이용한 속도 변화가 있는 회전 기계의 상태 진단 기법)

  • Jang, M.;Lee, J.M.;Hwang, Y.;Cho, Y.J.;Song, J.B.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.5
    • /
    • pp.413-421
    • /
    • 2012
  • In industry, various rotating machinery such as pumps, gas turbines, compressors, electric motors, generators are being used as an important facility. Due to the industrial development, they make high performance(high-speed, high-pressure). As a result, we need more intelligent and reliable machine condition diagnosis techniques. Diagnosis technique using hidden Markov-model is proposed for an accurate and predictable condition diagnosis of various rotating machines and also has overcame the speed limitation of time/frequency method by using compensation of the rotational speed of rotor. In addition, existing artificial intelligence method needs defect state data for fault detection. hidden Markov model can overcome this limitation by using normal state data alone to detect fault of rotational machinery. Vibration analysis of step-up gearbox for wind turbine was applied to the study to ensure the robustness of diagnostic performance about compensation of the rotational speed. To assure the performance of normal state alone method, hidden Markov model was applied to experimental torque measuring gearbox in this study.

Hand Gesture Recognition Using HMM(Hidden Markov Model) (HMM(Hidden Markov Model)을 이용한 핸드 제스처인식)

  • Ha, Jeong-Yo;Lee, Min-Ho;Choi, Hyung-Il
    • Journal of Digital Contents Society
    • /
    • v.10 no.2
    • /
    • pp.291-298
    • /
    • 2009
  • In this paper we proposed a vision based realtime hand gesture recognition method. To extract skin color, we translate RGB color space into YCbCr color space and use CbCr color for the final extraction. To find the center of extracted hand region we apply practical center point extraction algorithm. We use Kalman filter to tracking hand region and use HMM(Hidden Markov Model) algorithm (learning 6 type of hand gesture image) to recognize it. We demonstrated the effectiveness of our algorithm by some experiments.

  • PDF

The Method for Face Recognition using Wavelet Coefficients and Hidden Markov Model (웨이블렛 계수와 Hidden Markov Model를 이용한 얼굴인식 기법)

  • 이경아;이대종;박장환;전명근
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09b
    • /
    • pp.162-165
    • /
    • 2003
  • 본 논문에서는 웨이블렛 계수와 Hidden Markov Model(HMM)이용한 얼굴인식 알고리즘을 제안한다. 입력 영상은 이산웨이블렛을 기반으로 한 다해상도 분석기법을 사용하여 데이터 수를 압축한 후, 각각의 해상도에서 얻어진 웨이블렛 계수를 특징벡터로 사용하여 HMM의 모델을 생성한다. 인식단계 에서는 웨이블렛 변환에 의해 생성된 개별대역의 인식값을 더하여 상호 보완함으로써 인식률을 높일 수 있었다. 제안된 알고리즘의 타당성을 검증하기 위하여 기본적 알고리즘인 벡터 양자화(VQ) 기법을 적용한 경우와 기존 얼굴인식에 제안된 DCT-HMM을 이용한 기법과의 인식률 비교를 한 결과, 제안된 방법이 우수한 성능을 보임을 알 수 있었다.

  • PDF

On-Line Character Recognition using Hidden Markov Model and Genetic Algorithm (Hidden Markov Model 과 Genetic Algorithm을 이용한 온라인 문자인식에 관한 연구)

  • 홍영표;장춘서
    • Proceedings of the IEEK Conference
    • /
    • 2000.11c
    • /
    • pp.29-32
    • /
    • 2000
  • HMM(Hidden Markov Model)은 시간적인 정보를 토대로 하는 수학적인 방법으로서 문자인식에 많이 사용되어지고 있다. 그런데 HMM이 적용되고자 하는 문제에서 사용되어지는 상태 수와 HMM에서 사용되어지는 parameter들은 처음에 결정되는 값들에 의해서 상당히 많은 영향을 받게 된다. 따라서 한글의 특성을 이용한 HMM의 상태 수를 결정한 후 결정되어진 각각의 HMM parameter들을 Genetic Algorithm을 이용하였다. Genetic Algorithm은 매개변수 최적화 문제에 대하여 자연의 진화 원리를 마땅한 알고리즘으로 선택, 교배, 돌연변이 연산을 이용하여 최적의 개체를 구하게 된다. 여기서는 HMM에서의 Viterbi Algorithm을 적합도 검사에 사용하였다.

  • PDF

Multiple State Hidden Markov Model to Predict Transmembrane Protein Topology

  • Chi, Sang-Mun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.4
    • /
    • pp.1019-1031
    • /
    • 2004
  • This paper describes a new modeling method for the prediction of transmembrane protein topology. The structural regions of the transmembrane protein have been modeled by means of a multiple state hidden Markov model that has provided for the detailed modeling of the heterogeneous amino acid distributions of each structural region. Grammatical constraints have been incorporated to the prediction method in order to capture the biological order of membrane protein topology. The proposed method correctly predicted 76% of all membrane spanning regions and 92% sidedness of the integration when all membrane spanning regions were found correctly.

  • PDF

A Hidden Markov Model Imbedding Multiword Units for Part-of-Speech Tagging

  • Kim, Jae-Hoon;Jungyun Seo
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.6
    • /
    • pp.7-13
    • /
    • 1997
  • Morphological Analysis of Korean has known to be a very complicated problem. Especially, the degree of part-of-speech(POS) ambiguity is much higher than English. Many researchers have tried to use a hidden Markov model(HMM) to solve the POS tagging problem and showed arround 95% correctness ratio. However, the lack of lexical information involves a hidden Markov model for POS tagging in lots of difficulties in improving the performance. To alleviate the burden, this paper proposes a method for combining multiword units, which are types of lexical information, into a hidden Markov model for POS tagging. This paper also proposes a method for extracting multiword units from POS tagged corpus. In this paper, a multiword unit is defined as a unit which consists of more than one word. We found that these multiword units are the major source of POS tagging errors. Our experiment shows that the error reduction rate of the proposed method is about 13%.

  • PDF

Efficient Flow Entry Removal based on Hidden Markov Model (Hidden Markov Model을 기반으로 한 효율적인 Flow Entry 제거 기법)

  • Kim, Min-Woo;Kim, Se-Jun;Lee, Byung-Jun;Kim, Kyung-Tae;Youn, Hee-Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.01a
    • /
    • pp.145-146
    • /
    • 2019
  • SDN(Software Defined Networking) 환경에서는 OpenFlow 프로토콜을 사용함으로써, 컨트롤러는 스위치가 패킷의 도착이나 Table의 상태에 따라 미리 Flow table의 Entry를 추가, 갱신, 삭제하도록 제어한다. 본 논문에서는 Flow entry의 사용량에 대한 확률을 정확하게 측정하기 위하여 Hidden Markov Mode (HMM)을 적용한 새로운 Flow entry 사전 제거 기법을 제안한다. 본 연구를 통해 HMM을 사용하여 기존 기술들보다 효과적이며 Flow table 관리에 있어 향상된 성능을 목표로 한다.

  • PDF

Gaussian Model Optimization using Configuration Thread Control In CHMM Vocabulary Recognition (CHMM 어휘 인식에서 형상 형성 제어를 이용한 가우시안 모델 최적화)

  • Ahn, Chan-Shik;Oh, Sang-Yeob
    • Journal of Digital Convergence
    • /
    • v.10 no.7
    • /
    • pp.167-172
    • /
    • 2012
  • In vocabulary recognition using HMM(Hidden Markov Model) by model for the observation of a discrete probability distribution indicates the advantages of low computational complexity, but relatively low recognition rate has the disadvantage that require sophisticated smoothing process. Gaussian mixtures in order to improve them with a continuous probability density CHMM (Continuous Hidden Markov Model) model is proposed for the optimization of the library system. In this paper is system configuration thread control in recognition Gaussian mixtures model provides a model to optimize of the CHMM vocabulary recognition. The result of applying the proposed system, the recognition rate of 98.1% in vocabulary recognition, respectively.

Improved Automatic Lipreading by Stochastic Optimization of Hidden Markov Models (은닉 마르코프 모델의 확률적 최적화를 통한 자동 독순의 성능 향상)

  • Lee, Jong-Seok;Park, Cheol-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.14B no.7
    • /
    • pp.523-530
    • /
    • 2007
  • This paper proposes a new stochastic optimization algorithm for hidden Markov models (HMMs) used as a recognizer of automatic lipreading. The proposed method combines a global stochastic optimization method, the simulated annealing technique, and the local optimization method, which produces fast convergence and good solution quality. We mathematically show that the proposed algorithm converges to the global optimum. Experimental results show that training HMMs by the method yields better lipreading performance compared to the conventional training methods based on local optimization.