• Title/Summary/Keyword: Hexagonal Water

Search Result 82, Processing Time 0.021 seconds

Relation between the Concentration of Hexagonal Boron Nitride Nano-Sheets Dispersed in Pure Water and Their Width and Height (초순수 용매 내 육방정 질화붕소 나노시트의 농도와 크기의 관계)

  • Cho, Dae-Hyun;Park, Miyoung;Ha, Seonghun
    • Tribology and Lubricants
    • /
    • v.35 no.6
    • /
    • pp.343-349
    • /
    • 2019
  • According to a report in 2011, hexagonal boron nitride demonstrated good solubility in pure water, even without surfactants or organic functionalization. Hexagonal boron nitride nanosheets are an effective lubricant additive, and their solubility in pure water has motivated lubrication engineers to utilize aqueous solutions containing these nanosheets as water-based lubricants. In this study, we measure the width and height of the hexagonal boron nitride nanosheets dispersed in pure water by using the Zetasizer and atomic force microscopy. Without surfactants or functionalization, aqueous solutions containing 0.10, 0.07, 0.05, and 0.01 wt% of hexagonal boron nitride nanosheets are synthesized via sonication-assisted hydrolysis. The Zetasizer provides only a one-dimensional size of approximately 410 nm, regardless of the concentration of the solution. Thus, it does not allow the estimation of the shape of the nanosheet. To acquire the three-dimensional size of the nanosheets, atomic force microscopy is employed. The aqueous solutions containing 0.10, 0.07, 0.05, and 0.01 wt% of the hexagonal boron nitride nanosheets show average values of 740, 450, 700, and 610 nm in width, and 37, 26, 33, and 32 nm in thickness, respectively. No significant trend is observed between the concentration of the solution and size of the nanosheets. Therefore, when preparing a water-based lubricant, it may be appropriate to adjust conditions such as ultrasonication time rather than the concentration.

Tracer Experiment and Computational Fluid Dynamics Analysis for the Drainage Efficiency of a Reservoir (배수지의 배수효율분석을 위한 추적자실험 및 전산유체해석)

  • Cho, Jung-Yeon;Go, Sun-Ho;Kwac, Lee-Ku
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.2
    • /
    • pp.22-27
    • /
    • 2017
  • During the water treatment process for household water supply, a reservoir is the last place the water is stored before being supplied to users, and the duration of the water's stay is an important factor that affects its safety. This may cause the concentration of the residual chlorine disinfectant to increase and thus lower the water's quality. The concentration and discharge efficiency of residual chlorine must be verified and managed, because these are key factors that affect the reservoir's performance. Because the actual verification test for analyzing the efficiency of a reservoir and the disinfectant's dilution capacity is difficult, simulations are generally conducted using the computational fluid analysis method. However, the simulation results require validation with experiments. The error and drainage efficiency were analyzed in this study by comparing and analyzing the actual tracer test and simulation so that the actual test for a hexagonal drainage can be replaced by the computational fluid analysis method. Based on the results of the efficiency analysis, the hexagonal reservoir was found to be appropriate, and the simulation's reliability was verified with a tracer test.

Controlled Assembly of Gold Nanoprism and Hexagonal Nanoplate Films for Surface Enhanced Raman Scattering

  • Lee, Doo-Ri;Hong, Soon-Chang;Park, Sung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3575-3580
    • /
    • 2011
  • This paper reports a methodology for preparing close-packed two dimensional gold nanoprism films and hexagonal nanoplate films at a hexane/water interface. By controlling the concentration of linker molecules in the hexane layer and the temperature of the colloid solution, highly ordered close-packed nanoplate arrays can be fabricated. These films were investigated to compare their corresponding surface enhanced Raman scattering (SERS) efficiencies. It was demonstrated that the Au nanoprism films resulted in a stronger SERS enhancement than the Au hexagonal nanoplate films. The difference in the SERS enhancement is attributed to the film array difference, demonstrating that Au nanoprism films have a higher line contact density than their Au hexagonal analogues.

Experimental Study on Improving Compressive Strength of Hexagonal Boron Nitride Reinforced Cement Composite (Hexagonal-Boron Nitride 강화 시멘트 복합체의 압축강도 향상에 대한 실험적 연구)

  • Choi, Yomin;Shin, Hyun-Gyoo
    • Journal of Powder Materials
    • /
    • v.27 no.6
    • /
    • pp.503-508
    • /
    • 2020
  • The mechanical properties and microstructures of hexagonal boron nitride (h-BN)-reinforced cement composites are experimentally studied for three and seven curing days. Various sizes (5, 10, and 18 ㎛) and concentrations (0.1%, 0.25%, 0.5%, and 1.0%) of h-BN are dispersed by the tip ultrasonication method in water and incorporated into the cement composite. The compressive strength of the h-BN reinforced cements increases by 40.9%, when 0.5 wt% of 18 ㎛-sized h-BN is added. However, the compressive strength decreases when the 1.0 wt% cement composite is added, owing to the aggregation of the h-BNs in the cement composite. The microstructural characterization of the h-BN-reinforced cement composite indicates that the h-BNs act as bridges connecting the cracks, resulting in improved mechanical properties for the reinforced cement composite.

Reciprocating Wear Test of AISI 52100 Bearing Steel in h-BN-based Aqueous Lubricants

  • Gowtham Balasubramaniam;Dae-Hyun Cho
    • Tribology and Lubricants
    • /
    • v.39 no.6
    • /
    • pp.228-234
    • /
    • 2023
  • In this study, reciprocating wear tests are performed on AISI 52100 bearing steel to investigate its tribological behavior in a hexagonal boron nitride (h-BN) water solution. The h-BN-based aqueous lubricant is prepared using an atoxic procedure called ultrasonic sonication in pure water. Ball-on-flat reciprocating sliding experiments are conducted, where the ball is slewed on a fixed flat at 50-㎛ displacement. The lubricating behavior of h-BN is compared with that of deionized (DI) water. Results show that the friction coefficient is higher in h-BN testing than that in DI tests, but the results are equalized as the friction coefficient reaches a stable level. Scanning electron microscopic images reveal significant material loss in the center and mild abrasion on the edge of the wear scar in h-BN tests. However, these effects are minor in DI water situations. The results of energy-dispersive X-ray spectroscopy show that considerable oxidation occurs in the central zone of the wear scar in h-BN cases with strong adhesion and material removal. These findings reveal the importance of determining ideal circumstances that can tolerate material friction and wear.

Effect of Water Content on the Morphology of ZnO Powders Synthesized in Binary Solvent Mixtures by Glycol Process

  • Phimmavong, Kongsy;Song, Jeong-Hwan;Cho, Seung-Beom;Lim, Dae-Young
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.3
    • /
    • pp.211-216
    • /
    • 2017
  • ZnO nanopowder was synthesized using a relatively facile and convenient glycol process. ZnO nanopowder was successfully synthesized at temperatures as low as $125^{\circ}C$ using zinc acetate as the Zn source and 1,4-butanediol as the solvent. Then, the effects of water content on the growth process and morphological evolution of ZnO powders were investigated using 1,4-butanediol and water as binary solvent mixtures. Using pure 1,4-butanediol at a temperature above $125^{\circ}C$, the prepared hexagonal ZnO nanopowder exhibited a quasi-spherical shape with average crystalline size of approximately 30 - 50 nm. It is also demonstrated that the morphology of ZnO powders can be controlled by the addition of various water content in 1,4-butanediol. With increasing water content, the morphologies of the ZnO powders changed sequentially from quasi-spherical to hexagonal plate and pyramid, and finally to hexagonal prismatic with a pyramidal tip. A sharp peak centered at 384 nm in the UV region and a weak broad peak in the visible region between 450 and 700 nm were shown in the room temperature PL spectra of the ZnO synthesized using the glycol process, regardless of the addition of water, suggesting that ZnO nanopowders with the best crystallinity were obtained under these conditions.

Synthesis and Shape Control Calcium Hydroxide Fine Powders by Hydration of Calcium Oxide (산화칼슘의 수화에 의한 수산화칼슘 미분말의 합성과 형상제어)

  • 민경소;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.9
    • /
    • pp.739-749
    • /
    • 1991
  • Calcium hydroxide fine powders were synthesized by hydration of calcium oxide, and the shapes of powders obtained were examined for each synthethic condition. When distilled water was used as a solvent, irregular and agglomerated submicron powders were obtained, and it was impossible to control of the shapes. In methanol-added solutions, hexagonal plate-like particles were obtained, but addition of ethanol had no effect. However on the occasion that substituted ethylene glycol for ethanol of 5 vol%, hexagonal plate-like powders were obtained. The shapes of powders synthesized in acetic acid and salicylic acid solutions were hexagonal platelike, and were spherical and very fine in citric acid and oxalic acid solutions, respectively. But in some solutions, calcium salts were precipitated by the reaction between calcium and acid added. And the size of powders were very fine using ultrasonic vibration instead of mechanical agitation.

  • PDF

Crystal Chemistry of Hexagonal 7$\AA$ Phyllomanganate Minerals (7$\AA$ 층상구조형 산화망간 광물의 결정화학)

  • 김수진
    • Journal of the Mineralogical Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.34-43
    • /
    • 1990
  • Crystal-chemical study of hexagonal 7$\AA$ phyllomanganate minerals reveals that they have hexagonal layer structures with variable c dimensions which depend on the nature of interlayer cations and content of water molecules between edge-sharing [MnO6] octahedral layers. Approximately one out of nine octahedral sites is statistically vacant, leading to the general unit cell formula R2xMn4+1-xO2.nH2O, where R=Ca, Mn2+, Mg, K, Na;x=0.09-0.14 ; n-0.37-0.84. Z=1. The minerals of this formula fall under the name of rancieite group. It includes Ca-diminant (rancieite), Mn2+-dominant (takanelite), Na-dominant (birnessite), and Mg-dominant members. Minerals of the rancieite group occur predominantly in two different hydration states, i.e., n shows the values around 0.35 and 0.75. It is suggested that minerals of higher hydration state be called as species(i.e., rancieite, etc.) and those of lower hydration state be called as dehydrated varieties(i.e., dehydrated rancieite,etc.).

  • PDF

Surface Order of Hexagonal Columnar Mesophases Induced by Molecular Assembly

  • Kim, Sang-Ouk;Ko, Young-Koan;Yoon, Dong-Ki;Kang, Sang-Yoon;Jung, Hee-Tae
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.11C no.2
    • /
    • pp.32-36
    • /
    • 2001
  • We investigate the surface order, defects and morphology of hexagonal columnar mesophases, Having a crown ether at one end which forms the center of the column and three fluorinated tails at the other, The orientation of the columns was successfully controlled by surface anchoring: Columns were aligned perpendicularly to an evaporated carbon surface, and the planar alignment do asymmetric compounds was induced by a water surface. TEM images show that there is a high degree of perfection in the packing do the cylinders. The hexagonal columnar mesophase (F(sub)h) was confirmed by direct images and the corresponding electron diffractions, where ordered cylindrical moieties are packed on a hexagonal lattice. The column of 12F8-ABG-15C5 was much straighter, compared with that of 12F8-AG-B15C5, resulting from the degrees of regular stacking. Elementary edge dislocation, grain boundary and +1/2 disclination have been observed, although the defects are generally rare.

Analysis of Drainage Efficiency of Different Type of Drainage using Computational Fluid Dynamic Method (유동해석을 통한 배수지형태에 따른 배수효율분석)

  • Cho, Jung-Yeon;Go, Sun-Ho;Kim, Hong-Gun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.2
    • /
    • pp.34-43
    • /
    • 2017
  • Large amounts of household water are required as common households change from the single-residence types of the past to group-residence types. Therefore, the management of reservoirs is urgently required to ensure the supply of clean household water to users. Important considerations for household water include the duration for which the water is stored in the reservoir, the disinfectant's dilution capacity, and the size of the reservoir to allow for the amount of water required for emergencies and firefighting. The drainage efficiency was analyzed in this study using computational fluid analysis for existing rectangular reservoirs and the newly proposed hexagonal reservoir. Thus, it was determined that the centrifugal force generated at the inlet was maintained until the outlet due to the approximately circular shape of the hexagonal reservoir. The findings of this study verified that the centrifugal force improved the flow rate by approximately 35% compared to existing rectangular reservoirs and that drainage was performed efficiently without stagnation zone.