• 제목/요약/키워드: Heteroscedastic Problem

검색결과 4건 처리시간 0.018초

A VARIABLE SELECTION IN HETEROSCEDASTIC DISCRIVINANT ANALYSIS : GENERAL PREDICTIVE DISCRIMINATION CASE

  • Kim, Hea-Jung
    • Journal of the Korean Statistical Society
    • /
    • 제21권1호
    • /
    • pp.1-13
    • /
    • 1992
  • This article deals with variable selection problem under a newly formed predictive heteroscedastic discriminant rule that accounts for mulitple homogeneous covariance matrices across the K multivariate normal populations. A general version of predictive discriminant rule, a variable selection criterion, and a criterion for stopping with further selection are suggested. In a simulation study the practical utilities of those considered are demonstrated.

  • PDF

가중치가 적용된 공분산을 이용한 2D-LDA 기반의 얼굴인식 (Improved Face Recognition based on 2D-LDA using Weighted Covariance Scatter)

  • 이석진;오치민;이칠우
    • 한국멀티미디어학회논문지
    • /
    • 제17권12호
    • /
    • pp.1446-1452
    • /
    • 2014
  • Existing LDA uses the transform matrix that maximizes distance between classes. So we have to convert from an image to one-dimensional vector as training vector. However, in 2D-LDA, we can directly use two-dimensional image itself as training matrix, so that the classification performance can be enhanced about 20% comparing LDA, since the training matrix preserves the spatial information of two-dimensional image. However 2D-LDA uses same calculation schema for transformation matrix and therefore both LDA and 2D-LDA has the heteroscedastic problem which means that the class classification cannot obtain beneficial information of spatial distances of class clusters since LDA uses only data correlation-based covariance matrix of the training data without any reference to distances between classes. In this paper, we propose a new method to apply training matrix of 2D-LDA by using WPS-LDA idea that calculates the reciprocal of distance between classes and apply this weight to between class scatter matrix. The experimental result shows that the discriminating power of proposed 2D-LDA with weighted between class scatter has been improved up to 2% than original 2D-LDA. This method has good performance, especially when the distance between two classes is very close and the dimension of projection axis is low.

A study on Robust Estimation of ARCH models

  • 김삼용;황선영
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2002년도 추계 학술발표회 논문집
    • /
    • pp.3-9
    • /
    • 2002
  • In financial time series, the autoregressive conditional heteroscedastic (ARCH) models have been widely used for modeling conditional variances. In many cases, non-normality or heavy-tailed distributions of the data have influenced the estimation methods under normality assumption. To solve this problem, a robust function for the conditional variances of the errors is proposed and compared the relative efficiencies of the estimators with other conventional models.

  • PDF

비선형 회귀모형에서 오차의 분산에 따른 예비검정 추정방법 (Preliminary test estimation method accounting for error variance structure in nonlinear regression models)

  • 유혜원;임창원
    • 응용통계연구
    • /
    • 제29권4호
    • /
    • pp.595-611
    • /
    • 2016
  • 일반적으로 독성학 또는 약리학에서는 자료를 분석할 때 Hill Model과 같은 비선형 회귀모형을 사용한다. 비선형 회귀모형에서 모수의 추정량과 그것의 불확실성(uncertainty)에 대한 측도의 추정은 오차의 분산 구조에 영향을 받게 된다. 따라서 자료가 등분산인지 혹은 이분산인지에 따라 사용하여야 할 추정 방법이 달라져야 한다. 그러나 일반적으로 자료를 실제로 분석하기 전에는 오차의 분산구조에 대해서 잘 알 수 없다. 그러므로 오차의 분산구조에 로버스트한 추정 방법을 개발하는 것은 중요한 문제이다. 본 논문에서는 예비검정 방법을 기반으로 한 비선형 회귀모형에서의 모수 추정 방법을 제안하였다. 오차 분산의 등분산성에 대한 간단한 예비검정의 결과에 따라 보통 최소제곱 추정(ordinary Least Square Estimation) 방법과 반복 가중 최소제곱 추정(iterative weighted least square estimation) 방법을 사용하는 추정량을 정의하였다. 제안된 추정량은 모의실험 연구를 통하여 기존의 표준적인 추정량들과 그 성능을 비교하였다. 또한 미국의 National Toxicology Program으로부터 얻어진 실제자료를 사용하여 추정 방법들을 비교하였다.