• Title/Summary/Keyword: Heterologous gene expression

Search Result 180, Processing Time 0.025 seconds

Bombyx mori β-tubulin Promoter for High-level Expression of Heterologous Genes

  • Park, Kwanho;Goo, Tae-Won
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.39 no.1
    • /
    • pp.22-28
    • /
    • 2019
  • We previously isolated 9 clones that show stronger signal compared to Bombyx mori cytoplasmic actin gene (BmA3) by using a dot blot hybridization. In this study, we focused on one clone among these clones which has high amino acid similarity with ${\beta}$-tubulin gene of B. mori. This clone was ubiquitously expressed in all tissues and developmental stage of B. mori. As result of promoter assay using dual luciferase assay system, we found the highest transcription activity region (-750/-1) in the 5'-flanking region of ${\beta}$-tubulin gene, which has about 47 fold more intensive promoter activity than BmA3 promoter. Moreover, the ${\beta}$-tubulin promoter was normally regulated in Bm5, Sf9, and S2 cells. Therefore, we suggest that ${\beta}$-tubulin promoter may be used more powerful and effectively for transgene expression in various insects containing B. mori as a universal promoter.

Enhanced Gene Expression by Fusion to Rice-ubiquitin in Yeast

  • Kim, Young-Mi
    • Journal of Applied Biological Chemistry
    • /
    • v.43 no.1
    • /
    • pp.1-4
    • /
    • 2000
  • Chloramphenicol acetyl CoA transferase (CAT) and angiotensin- converting enzyme inhibitory peptide (ACEI) were fused to C-terminal region of rice ubiquitin to examine the level of transcripts or enzyme activities in yeast. When two chimeric genes under an inducible Gall promoter control were transformed into Saccharomyces cerevisaie, both CAT and ACE inhibitory activities were enhanced by three to four-fold as compared to those containing no ubiquitin gene. However, the levels of transcripts of ubiquitin fused and un fused genes were not significantly different each other. Therefore, it was suggested that the expression of foreign genes was post-transcriptionally enhanced by fusion of plant ubiquitin in heterologous organisms such as yeast.

  • PDF

Characterization of Two GAS1 Genes and Their Effects on Expression and Secretion of Heterologous Protein Xylanase B in Kluyveromyces lactis

  • Lian, Zhao;Jiang, Jing-Bo;Chi, Shuang;Guan, Guo-Hua;Li, Ying;Li, Ji-Lun
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.12
    • /
    • pp.1977-1988
    • /
    • 2015
  • β-1,3-glucanosyltransferases play essential roles in cell wall biosynthesis in yeast. Kluyveromyces lactis has six putative β-1,3-glucanosyltransferase genes. KlGAS1-1 and KlGAS1-2 are homologs of Saccharomyces cerevisiae gene GAS1. RT-qPCR indicated the transcription level of KlGAS1-1 was significantly reduced while heterologous protein (thermostable xylanase B) secretion was enhanced during medium optimization. To evaluate if these two events were related, and to improve xylanase B secretion in K. lactis, we constructed KlGAS1-1 and KlGAS1-2 single deletion strains and double deletion strain, respectively. KlGAS1-1 gene deletion resulted in the highest xylanase B activity among the three mutants. Only the double deletion strain showed morphology similar to that of the GAS1 deletion mutant in S. cerevisiae. The two single deletion strains differed in terms of cell wall thickness and xylanase B secretion. Transcription levels of β-1,3-glucanosyltransferase genes and genes related to protein secretion and transport were assayed. The β-1,3-glucanosyltransferase genes displayed transcription complementation in the cell wall synthesis process. KlGAS1-1 and KlGAS1-2 affected transcription levels of secretion- and transport-related genes. Differences in protein secretion ratio among the three deletion strains were associated with changes of transcription levels of secretion- and transport-related genes. Our findings indicate that KlGAS1-1 deletion is an effective tool for enhancing industrial-scale heterologous protein secretion in K. lactis.

Attenuated Secretion of the Thermostable Xylanase xynB from Pichia pastoris Using Synthesized Sequences Optimized from the Preferred Codon Usage in Yeast

  • Huang, Yuankai;Chen, Yaosheng;Mo, Delin;Cong, Peiqing;He, Zuyong
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.3
    • /
    • pp.316-325
    • /
    • 2012
  • Xylanase has been used extensively in the industrial and agricultural fields. However, the low-yield production of xylanase from native species cannot meet the increasing demand of the market. Therefore, improving the heterologous expression of xylanase through basic gene optimization may help to overcome the shortage. In this study, we synthesized a high-GC-content native sequence of the thermostable xylanase gene xynB from Streptomyces olivaceoviridis A1 and, also designed a slightly AT-biased sequence with codons completely optimized to be favorable to Pichia pastoris. The comparison of the sequences' expression efficiencies in P. pastoris X33 was determined through the detection of single-copy-number integrants, which were quantified using qPCR. Surprisingly, the high GC content did not appear to be detrimental to the heterologous expression of xynB in yeast, whereas the optimized sequence, with its extremely skewed codon usage, exhibited more abundant accumulation of synthesized recombinant proteins in the yeast cell, but an approximately 30% reduction of the secretion level, deduced from the enzymatic activity assay. In this study, we developed a more accurate method for comparing the expression levels of individual yeast transformants. Moreover, our results provide a practical example for further investigation of what constitutes a rational design strategy for a heterologously expressed and secreted protein.

Heterologous Expression of Novel Cytochrome P450 Hydroxylase Genes from Sebekia benihana

  • Park Nam-Sil;Park Hyun-Joo;Han Kyu-Boem;Kim Eung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.295-298
    • /
    • 2006
  • Actinomycetes are ubiquitous Gram-positive soil bacteria and a group of the most important industrial microorganisms for the biosynthesis of many valuable secondary metabolites as well as the source of various bioconversion enzymes. Cytochrome P450 hydroxylase (CYP), a hemebinding protein, is known to be involved in the modification of various natural compounds, including polyketides, fatty acids, steroids, and some aromatic compounds. Previously, six different novel CYP genes were isolated from a rare actinomycetes called Sebekia benihana, and they were completely sequenced, revealing significant amino acid similarities to previously known CYP genes involved in Streptomyces secondary metabolism. In the present study, these six CYP genes were functionally expressed in Streptomyces lividans, using an $ermE^{*}$ promoter-containing Streptomyces expression vector. Among six CYP genes, two S. benihana CYP genes (CYP503 and CYP504) showed strong hydroxylation activities toward 7-ethoxycoumarin. Furthermore, the recombinant S. lividans containing both the S. benihana CYP506-ferredoxin genes as well as the S. coelicolor feredoxin reductase gene also demonstrated cyclosporin A hydroxylation activity, suggesting potential application of actinomycetes CYPs for the biocatalysts of natural product bioconversion.

Flock House Virus RNA1 with a Long Heterologous Sequence at the 3'-end Can Replicate in Mammalian Cells and Mediate Reporter Gene Expression

  • Kim, Doyeong;Cho, Tae-Ju
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.11
    • /
    • pp.1790-1798
    • /
    • 2019
  • Flock House virus (FHV), an insect RNA virus, has a bipartite genome. FHV RNA1 can be packaged in turnip yellow mosaic virus (TYMV) as long as the FHV RNA has a TYMV sequence at the 3'-end. The encapsidated FHV RNA1 has four additional nucleotides at the 5'-end. We investigated whether the recombinant FHV RNA1 could replicate in mammalian cells. To address this issue, we prepared in vitro transcribed FHV RNAs that mimicked the recombinant FHV RNA1, and introduced them into baby hamster kidney (BHK) cells. The result showed that the recombinant FHV RNA1 was capable of replication. An eGFP gene inserted into the frame with B2 gene of the FHV RNA1 was also successfully expressed. We also observed that eGFP expression at the protein level was strong at 28℃ but weak at 30℃. Sequence analysis showed that the 3'-ends of the RNA1 and RNA3 replication products were identical to those of the authentic FHV RNAs. This indicates that FHV replicase correctly recognized an internally-located replication signal. In contrast, the 5'-ends of recombinant FHV RNA1 frequently had deletions, indicating random initiation of (+)-strand synthesis.

Expression of GRP78 Enhance-CAT Fusion Constructs Microiniected into Xenopus Iceuis Oocytes (Xenopus 난자에 미세주입된 GRP78 Enhancer-CAT 이형접합자의 발현)

  • 김용규;김규성박경숙
    • The Korean Journal of Zoology
    • /
    • v.37 no.2
    • /
    • pp.137-143
    • /
    • 1994
  • Microiniection of genes Into Xenopus laeuis oocvtes in highly useful in the annvsis of gene regulation, since a large number of oocvtes can be injected in a relatively short time. The GRP78 enhancer has been identified to a 291-bp fragment that spans a region of GRP78 promoter between -378 and -87 (Lin et at., 1986: Kim and Lee, 1989). We examined whether this GRP78 enhancer is effective in directing expression of heterologous gene in Xenopus laeuis oocytes. The chloramphenicol acetvltransferase (CAT) fusion constructs containing the GRP78 promoter and the SV4O early promoter were constructed and were injected into nuclei of Xencpus laeuis oocvtes. The recipient oocvtes were then assayed for CAT activity. The fusion constructs exhibited higher activity as compared to SV40 promoter tested here. The GRP78 enhancer showed 8.5- to 9.2-fold enhancement over that of the SV4O promoter. The orientation of GRP78 enhancer with respect to the direction of CAT transcription unit had no significant effect. Thus, the GRP78 enhancer is a viable candidate for the construction of expression system for use in Xenopus laevss oocvtes and will be important for the studY of a gene expression throughout development.

  • PDF

Construction of a Shuttle Vector for Protein Secretory Expression in Bacillus subtilis and the Application of the Mannanase Functional Heterologous Expression

  • Guo, Su;Tang, Jia-Jie;Wei, Dong-Zhi;Wei, Wei
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.4
    • /
    • pp.431-439
    • /
    • 2014
  • We report the construction of two Bacillus subtilis expression vectors, pBNS1/pBNS2. Both vectors are based on the strong promoter P43 and the ampicillin resistance gene expression cassette. Additionally, a fragment with the Shine-Dalgarno sequence and a multiple cloning site (BamHI, SalI, SacI, XhoI, PstI, SphI) were inserted. The coding region for the amyQ (encoding an amylase) signal peptide was fused to the promoter P43 of pBNS1 to construct the secreted expression vector pBNS2. The applicability of vectors was tested by first generating the expression vectors pBNS1-GFP/pBNS2-GFP and then detecting for green fluorescent protein gene expression. Next, the mannanase gene from B. pumilus Nsic-2 was fused to vector pBNS2 and we measured the mannanase activity in the supernatant. The mannanase total enzyme activity was 8.65 U/ml, which was 6 times higher than that of the parent strain. Our work provides a feasible way to achieve an effective transformation system for gene expression in B. subtilis and is the first report to achieve B. pumilus mannanase secretory expression in B. subtilis.

Isolation of a Promoter Element that is Functional in Bacillus subtilis for Heterologous Gene Expression

  • Maeng, Chang-Jae;Kim, Hyung-Kwoun;Park, Sun-Yang;Koo, Bon-Tag;Oh, Tae-Kwang;Lee, Jung-Kee
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.1
    • /
    • pp.85-91
    • /
    • 2001
  • To construct an efficient Bacillus subtilis expression vector, strong promoters were isolated from the chromosomal DNA libraries of Clostridium acetobutylicum ATCC 4259, Thermoactinomyces sp. E79, and Bacillus thermoglucosidasius KCTC 3400. The $P_{C27}$ promoter cloned from the clostridial chromosmal DNA showed a 5-fold higher promoter strength than the $P_{SP02}$ promoter in the expression of the cat gene, and its sequence was estimated as an upstream region of the predicted hypothetical gene (tet-R family bacterial transcription regulator gene) in C. acetobutylicum. As a promoter element, $P_{C27}$ exhibited putative nucleotide sequences that can bind with bacterial RNAP and the 3'end of the 16S rRNA just upstream of the start codon. In addition, the promoter activity of $P_{C27}$ was distinctively repressed in the presence of glucose. Using $P_{C27}$ as the promoter element, a glucose controllable B. subtilis expression vector was constructed and the lipase gene from Staphylococcus haemolyticus KCTC 8957P was expressed in B. subtilis. When compared with the lipase expression by the T7 promoter induced by IPTG in E. coli, the $P_{C27}$ promoter showed about a 1.5-fold higher expression level in B. subtilis than that without induction.

  • PDF

Study of a Tobacco MADS-Box Gene Triggering Flower Formation

  • Chung, Yong-Yoon;N, Gynheung-A
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1996.07a
    • /
    • pp.10-18
    • /
    • 1996
  • Recently, we have reported a rice MADS-box gene, OsMADS1, as a molecular factor triggering flower formation; this has been well studied in a heterologous system (Chung et al., 1994). In order to study whether the OsMADS1 homolog exists in other plant species, the OsMADS1 cDNA was used as a probe to screen a tobacco cDNA library, and a potential homolog, NtMADS3, was isolated. Sequence analysis revealed that the gene shares 56.1% identity in whole amino acids with OsMADS1. Like OsMADS1, the NtMADS3 gene starts to express at a very early stage of flower development, and the expression continues up to flower maturation. In the tobacco flower, the gene is expressed in whorl 2,3 and 4, corresponding to the petal, stamen, and carpel, respectively. Upon ectopic expression in the homologous system, NtMADS3 caused a trasition from inflorescence shoot meristem into floral meristem, reducing flowering time dramatically. These phenotypes strongly suggest the NtMADS3 gene is the OsMADS1 homolog of tobacco. Hybrids between the OsMADS1 and the NtMADS3 plants were also generated. The hybrids flowered even earlier than these two transgenic plants. The detailed studies are discussed here.

  • PDF