• Title/Summary/Keyword: Heterojunction structure

Search Result 132, Processing Time 0.028 seconds

The Structure and Electrical Properties of Si-ZnO n-n Heterojunctions (Si-ZnO n-n 이종접합의 구조 및 전기적 특성)

  • 이춘호;박순자
    • Journal of the Korean Ceramic Society
    • /
    • v.23 no.1
    • /
    • pp.44-50
    • /
    • 1986
  • Si-ZnO n-n heterojunction diodes were prespared by r.f diode sputtering of the sintered ZnO target on n-type Si single crystal wafers and their structures and electrical properties were studied. The films were grown orientedly with the c-axis of crystallites perpendicular to the substrate surface at low r.f. powder and grown to polycrystalline films with random orientation at high r. f. powder. The crystallite size increased with the increasing substrate temperture The oriented texture films only were used to prepare the photovoltaic diodes and these didoes showed the photovoltaic effect veing positive of the ZnO side for the photons in the wavelength range of 380-1450nm. The sign reversal of phootovoltage which is the property os isotype heterojunction was not observed because of the degeneration of the ZnO films. The diode showed the forward rectification when it was biased with the ZnO side positive. The current-voltage characteristics exhibited the thermal-current type relationship J∝exp(qV/nkT) with n=1.23 at the low forward bias voltage and the tunnelling-current type relationship J∝exp($\alpha$V) where $\alpha$ was constant independent of temperature at the high forward bias voltage. The crystallite size of ZnO films were influenced largely on the photovoltaic properties of diodes ; The diodes with the films of the larger crystallites showed the poor photovoltaic properties. This reason may be cosidered that the ZnO films with the large crystallites could not grow to the electrically continuous films because the thickness of films was so thin in this experiment.

  • PDF

Characteristics of Vanadium Oxide Grown by Atomic Layer Deposition for Hole Carrier Selective Contacts Si Solar Cells (실리콘 전하선택접합 태양전지 적용을 위한 원자층 증착법으로 증착된 VOx 박막의 특성)

  • Park, Jihye;Chang, Hyo Sik
    • Korean Journal of Materials Research
    • /
    • v.30 no.12
    • /
    • pp.660-665
    • /
    • 2020
  • Silicon heterojunction solar cells can achieve high conversion efficiency with a simple structure. In this study, we investigate the passivation characteristics of VOx thin films as a hole-selective contact layer using ALD (atomic layer deposition). Passivation characteristics improve with iVoc (implied open-circuit voltage) of 662 mV and minority carrier lifetime of 73.9 µs after post-deposition annealing (PDA) at 100 ℃. The improved values are mainly attributed to a decrease in carbon during the VOx thin film process after PDA. However, once it is annealed at temperatures above 250 ℃ the properties are rapidly degraded. X-ray photoelectron spectroscopy is used to analyze the chemical states of the VOx thin film. As the annealing temperature increases, it shows more formation of SiOx at the interface increases. The ratio of V5+ to V4+, which is the oxidation states of vanadium oxide thin films, are 6:4 for both as-deposition and annealing at 100 ℃, and 5:5 for annealing at 300 ℃. The lower the carbon content of the ALD VOx film and the higher the V5+ ratio, the better the passivation characteristics.

Recent Development of High-efficiency Silicon Heterojunction Technology Solar Cells (실리콘 이종접합 태양전지 개발동향)

  • Lee, Ahreum;Yoo, Jinsu;Park, Sungeun;Park, Joo Hyung;Ahn, Seungkyu;Cho, Jun-Sik
    • Current Photovoltaic Research
    • /
    • v.9 no.4
    • /
    • pp.111-122
    • /
    • 2021
  • Silicon heterojunction technology (HJT) solar cells have received considerable attention due to advantages that include high efficiency over 26%, good performance in the real world environment, and easy application to bifacial power generation using symmetric device structure. Furthermore, ultra-highly efficient perovskite/c-Si tandem devices using the HJT bottom cells have been reported. In this paper, we discuss the unique feature of the HJT solar cells, the fabrication processes and the current status of technology development. We also investigate practical challenges and key technologies of the HJT solar cell manufacturers for reducing fabrication cost and increasing productivity.

Impact of Cyano and Fluorine Group Functionalization on the Optoelectronic and Photovoltaic Properties of Donor-Acceptor-π-Acceptor Benzothiadiazole Derived Small Molecules: A DFT and TD-DFT Study

  • Prabhat Gautam;Anurag Gautam;Neeraj Kumar
    • Korean Journal of Materials Research
    • /
    • v.33 no.6
    • /
    • pp.236-241
    • /
    • 2023
  • Solar cells based on p-conjugated donor-acceptor (D-A) organic molecular systems are a promising alternative to conventional electrical energy generation. D-A molecular systems, which have a triphenylamine (TPA) moiety linked with a benzothiadiazole (BTD) moiety, open the potential development of new small molecule donors for bulk heterojunction (BHJ) solar cells. Here, a series of donor-acceptor-π-acceptor (D-A-π-A) small molecule donors (SMD) derived from triphenylamine (TPA) donor and benzothiadiazole (BTD) acceptor building blocks, were designed for BHJ organic solar cells. The small molecule donors SMD1-4 were studied using density functional theory (DFT) and time dependent-DFT (TDDFT) methods, to understand the effect of cyano and fluorine group functionalization on their properties. The effect of structure alteration by cyano and fluorine group functionalization on the optoelectronic properties, the calculated highest occupied molecular orbitals (HOMOs) and lowest unoccupied molecular orbitals (LUMOs) and the HOMO-LUMO gaps were theoretically explored. The Voc (open-circuit photovoltage) and fill factor (FF) for SMD1-4 were obtained with a PC71BM acceptor, which showed that these organic small molecules are potential small molecule donors for organic bulk heterojunction solar cells.

Ultraviolet LEDs using n-ZnO:Ga/i-ZnO/p-GaN:Mg heterojunction (n-ZnO/i-ZnO/p-GaN:Mg 이종접합을 이용한 UV 발광 다이오드)

  • Han, W.S.;Kim, Y.Y.;Kong, B.H.;Cho, H.K.;Lee, J.H.;Kim, H.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.50-50
    • /
    • 2008
  • ZnO has been extensively studied for optoelectronic applications such as blue and ultraviolet (UV) light emitters and detectors, because it has a wide band gap (3.37 eV) anda large exciton binding energy of ~60 meV over GaN (~26 meV). However, the fabrication of the light emitting devices using ZnO homojunctions is suffered from the lack of reproducibility of the p-type ZnO with high hall concentration and mobility. Thus, the ZnO-based p-n heterojunction light emitting diode (LED) using p-Si and p-GaN would be expected to exhibit stable device performance compared to the homojunction LED. The n-ZnO/p-GaN heterostructure is a good candidate for ZnO-based heterojunction LEDs because of their similar physical properties and the reproducibleavailability of p-type GaN. Especially, the reduced lattice mismatch (~1.8 %) and similar crystal structure result in the advantage of acquiring high performance LED devices with low defect density. However, the electroluminescence (EL) of the device using n-ZnO/p-GaN heterojunctions shows the blue and greenish emissions, which are attributed to the emission from the p-GaN and deep-level defects. In this work, the n-ZnO:Ga/p-GaN:Mg heterojunction light emitting diodes (LEDs) were fabricated at different growth temperatures and carrier concentrations in the n-type region. The effects of the growth temperature and carrier concentration on the electrical and emission properties were investigated. The I-V and the EL results showed that the device performance of the heterostructure LEDs, such as turn-on voltage and true ultraviolet emission, developed through the insertion of a thin intrinsic layer between n-ZnO:Ga and p-GaN:Mg. This observation was attributed to a lowering of the energy barriers for the supply of electrons and holes into intrinsic ZnO, and recombination in the intrinsic ZnO with the absence of deep level emission.

  • PDF

Fabrication and Photoelectrochemical Properties of a Cu2O/CuO Heterojunction Photoelectrode for Hydrogen Production from Solar Water Splitting (태양광 물 분해를 통한 수소 생산용 Cu2O/CuO 이종접합 광전극의 제작 및 광전기화학적 특성)

  • Kim, Soyoung;Kim, Hyojin;Hong, Soon-Ku;Kim, Dojin
    • Korean Journal of Materials Research
    • /
    • v.26 no.11
    • /
    • pp.604-610
    • /
    • 2016
  • We report on the fabrication and characterization of a novel $Cu_2O/CuO$ heterojunction structure with CuO nanorods embedded in $Cu_2O$ thin film as an efficient photocathode for photoelectrochemical (PEC) solar water splitting. A CuO nanorod array was first prepared on an indium-tin-oxide-coated glass substrate via a seed-mediated hydrothermal synthesis method; then, a $Cu_2O$ thin film was electrodeposited onto the CuO nanorod array to form an oxide semiconductor heterostructure. The crystalline phases and morphologies of the heterojunction materials were examined using X-ray diffraction and scanning electron microscopy, as well as Raman scattering. The PEC properties of the fabricated $Cu_2O/CuO$ heterojunction photocathode were evaluated by photocurrent conversion efficiency measurements under white light illumination. From the observed PEC current density versus voltage (J-V) behavior, the $Cu_2O/CuO$ photocathode was found to exhibit negligible dark current and high photocurrent density, e.g. $-1.05mA/cm^2$ at -0.6 V vs. $Hg/HgCl_2$ in $1mM\;Na_2SO_4$ electrolyte, revealing the effective operation of the oxide heterostructure. The photocurrent conversion efficiency of the $Cu_2O/CuO$ photocathode was estimated to be 1.27% at -0.6 V vs. $Hg/HgCl_2$. Moreover, the PEC current density versus time (J-T) profile measured at -0.5 V vs. $Hg/HgCl_2$ on the $Cu_2O/CuO$ photocathode indicated a 3-fold increase in the photocurrent density compared to that of a simple $Cu_2O$ thin film photocathode. The improved PEC performance was attributed to a certain synergistic effect of the bilayer heterostructure on the light absorption and electron-hole recombination processes.

The Study of the Fabrication and Characteristics of $n-CdS_{0.46}Se_{0.54}/p-Cu_{2-X}S_{0.46}Se_{0.54}$ heterojunction Solar Cells ($n-CdS_{0.46}Se_{0.54}/p-Cu_{2-X}S_{0.46}Se_{0.54}$ 이종접합 태양전지의 제작과 그 특성에 관한 연구)

  • You, Sang-Ha;Choi, Seung-Pyung;Lee, Sang-Youl;Hong, Kwang-Joon;Suh, Sang-Suhg;Kim, Hye-Suk;Jeon, Seung-Yong;Yun, Eun-Hee;Moon, Jong-Dae;Shin, Yeong-Jin;Jeong, Tae-Soo;Shin, Hyun-Keel;Kim, Tack-Sung;Rheu, Kee-Soo
    • Solar Energy
    • /
    • v.13 no.1
    • /
    • pp.49-58
    • /
    • 1993
  • [ $CdS_{0.46}Se_{0.54}$ ] single crystal was grown by a sublimation method. The crystal structure and the temperature dependence of carrier density and mobility of $CdS_{0.46}Se_{0.54}$ single crystal were studied. Heterojunction solar cells of $n-CdS_{0.46}Se_{0.54}/p-Cu_{2-X}S_{0.46}Se_{0.54}$ were fabricated by the substitution reaction. The spectral response, the J-V characteristics and the conversion efficiency of the $n-CdS_{0.46}Se_{0.54}/p-Cu_{2-X}S_{0.46}Se_{0.54}$ heterojunction solar cells were studied. The open-circuit voltage, short-circuit density, fill factor and conversion efficiency of $n-CdS_{0.46}Se_{0.54}/p-Cu_{2-X}S_{0.46}Se_{0.54}$ heterojunction solar cells under $80mW/cm^2$ illumination were found to be 0.48V, $21mA/cm^2$, 0.75 and 9.5%, respectively.

  • PDF

Current-voltage characteristics of n-AZO/p-Si-rod heterojunction

  • Lee, Seong-Gwang;Choe, Jin-Seong;Jeong, Nan-Ju;Kim, Yun-Gi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.338.2-338.2
    • /
    • 2016
  • Al doped ZnO (AZO) thin films were deposited on Si substrates with rod-shaped-surface by pulsed laser deposition method (PLD). Si-rods were prepared through chemical etching. To analyze the influence on the formation of the rod structure, samples with various chemical etching conditions such as AgNO3/HF ratio, etching time, and solution temperature were prepared. The morphology of Si-rod structures were examined by FE-SEM. Fig. 1 shows a typical structure of n-AZO/p-Si-rod juncions. The fabricated n-AZO/p-Si-rod devices exhibited p-n diode current-voltage characteristics. We compared the I-V characteristics of n-AZO/p-Si-rod devices with the samples without Si-rod structure.

  • PDF

Characteristics of a Blue Light Emitting Diode with In$_{x}$Ga$_{1-x}$N MQW Structure Grwon by MOCVD (MOCVD로 성장된 In$_{x}$Ga$_{1-x}$N MQW 구조의 청색 발광당이오드의 특성)

  • 이숙헌;배성범;태흥식;이승하;함성호;이용현;이정희
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.8
    • /
    • pp.24-30
    • /
    • 1998
  • A blue LED of $In_{x}Ga_{1-x}N$ multiple quantum well structure which had the blue emission spectrum of donor-acceptor pair transition generated form Si-Zn co-doped $In_{x}Ga_{1-x}N$ active layer, was fabricated. The $In_{x}Ga_{1-x}N$ MQW heterojunction LED structure was grown by MOCVD on the sapphire substrate with (0001) surface orientation at 800.deg. C. The fabricated LED exhibited forward cut-in voltage of 4~4.5V and reverse breakdown voltage of -13V. Its optical chracteristics showed that the center wavelength of peak emission occurred at 460nm and the optical intensity was increased linearly with respect to the injected electrical current above 5mA.

  • PDF

I-V characteristics of resonant interband tunneling diodes with single quantum well structure (단일 양자 우물 구조로 된 밴드간 공명 터널링 다이오드의 전류-전압 특성)

  • 김성진;박영석
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.4
    • /
    • pp.27-32
    • /
    • 1997
  • In resonant tunneling diodes with the quantum well structure showing the negative differential resistance (NDR), it is essential to increase both the peak-to-valley current ratio (PVCR) and the peak current desnity ( $J_{p}$) for the accurate digital switching operation and the high output of the device. In this work, a resonant interband tunneling diode (RITD) with single quantum well structure, which is composed of I $n_{0.47}$As/I $n_{0.52}$A $l_{0.48}$As heterojunction on the InP substrate, is fabricated ot improve PVCR and JP, and then the dependence of I-V charcteristics on the width of the quantum well was investigated.d.ted.d.

  • PDF