• Title/Summary/Keyword: Heterogeneous sensor

Search Result 203, Processing Time 0.022 seconds

RESOURCE ORIENTED ARCHITECTURE FOR MUTIMEDIA SENSOR NETWORKS IWAIT2009

  • Iwatani, Hiroshi;Nakatsuka, Masayuki;Takayanagi, Yutaro;Katto, Jiro
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.456-459
    • /
    • 2009
  • Sensor network has been a hot research topic for the past decade and has moved its phase into using multimedia sensors such as cameras and microphones [1]. Combining many types of sensor data will lead to more accurate and precise information of the environment. However, the use of sensor network data is still limited to closed circumstances. Thus, in this paper, we propose a web-service based framework to deploy multimedia sensor networks. In order to unify different types of sensor data and also to support heterogeneous client applications, we used ROA (Resource Oriented Architecture [2]).

  • PDF

Data Congestion Control Using Drones in Clustered Heterogeneous Wireless Sensor Network (클러스터된 이기종 무선 센서 네트워크에서의 드론을 이용한 데이터 혼잡 제어)

  • Kim, Tae-Rim;Song, Jong-Gyu;Im, Hyun-Jae;Kim, Bum-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.12-19
    • /
    • 2020
  • The clustered heterogeneous wireless sensor network is comprised of sensor nodes and cluster heads, which are hierarchically organized for different objectives. In the network, we should especially take care of managing node resources to enhance network performance based on memory and battery capacity constraints. For instances, if some interesting events occur frequently in the vicinity of particular sensor nodes, those nodes might receive massive amounts of data. Data congestion can happen due to a memory bottleneck or link disconnection at cluster heads because the remaining memory space is filled with those data. In this paper, we utilize drones as mobile sinks to resolve data congestion and model the network, sensor nodes, and cluster heads. We also design a cost function and a congestion indicator to calculate the degree of congestion. Then we propose a data congestion map index and a data congestion mapping scheme to deploy drones at optimal points. Using control variable, we explore the relationship between the degree of congestion and the number of drones to be deployed, as well as the number of drones that must be below a certain degree of congestion and within communication range. Furthermore, we show that our algorithm outperforms previous work by a minimum of 20% in terms of memory overflow.

Design and implementation of a dynamic management method for heterogeneous RFID/USN devices (이기종 RFID/센서 디바이스 동적관리를 위한 방법 설계 및 구현)

  • Kim, Hyu-Chan;Soh, Seok-Yong;Koh, Wan-Ki;Yang, Moon-Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.7
    • /
    • pp.143-150
    • /
    • 2009
  • Recently "Green IT" technology has been attracting public attention that the Ministry of Environment has come up with new plans to make "low carbon and green growth" technology and to promote u-City industries. Making an offer, Uubiquitous Service needs RFID/USN Middleware to handle heterogeneous RFID/USN devices in order to gather existing informations. In this paper, we propose the design and implementation of a dynamic management method for heterogeneous RFID/USN devices. In compliance with the paper I will furnish Uubiquitous Service regarding existing circumstances by handling heterogeneous RFID/USN devices such as new RFID/Sensor devices addition and deletion and so on.

Energy-efficient Positioning of Cluster Heads in Wireless Sensor Networks

  • Sohn, Surg-Won;Han, Kwang-Rok
    • Journal of IKEEE
    • /
    • v.13 no.1
    • /
    • pp.71-76
    • /
    • 2009
  • As one of the most important requirements for wireless sensor networks, prolonging network lifetime can be realized by minimizing energy consumption in cluster heads as well as sensor nodes. While most of the previous researches have focused on the energy of sensor nodes, we devote our attention to cluster heads because they are most dominant source of power consumption in the cluster-based sensor networks. Therefore, we seek to minimize energy consumption by minimizing the maximum(MINMAX) energy dissipation at each cluster heads. This work requires energy-efficient clustering of the sensor nodes while satisfying given energy constraints. In this paper, we present a constraint satisfaction modeling of cluster-based routing in a heterogeneous sensor networks because mixed integer programming cannot provide solutions to this MINMAX problem. Computational experiments show that substantial energy savings can be obtained with the MINMAX algorithm in comparison with a minimum total energy(MTE) strategy.

  • PDF

An Effective Mapping for a Mobile Robot using Error Backpropagation based Sensor Fusion (오류 역전파 신경망 기반의 센서융합을 이용한 이동로봇의 효율적인 지도 작성)

  • Kim, Kyoung-Dong;Qu, Xiao-Chuan;Choi, Kyung-Sik;Lee, Suk-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.9
    • /
    • pp.1040-1047
    • /
    • 2011
  • This paper proposes a novel method based on error back propagation neural networks to fuse laser sensor data and ultrasonic sensor data for enhancing the accuracy of mapping. For navigation of single robot, the robot has to know its initial position and accurate environment information around it. However, due to the inherent properties of sensors, each sensor has its own advantages and drawbacks. In our system, the robot equipped with seven ultrasonic sensors and a laser sensor navigates to map two different corridor environments. The experimental results show the effectiveness of the heterogeneous sensor fusion using an error backpropagation algorithm for mapping.

Design of Coordinator Based on Android for Data Collection in Body Sensor Network

  • Min, Seongwon;Lee, Jong-Yong;Jung, Kye-Dong
    • International Journal of Advanced Culture Technology
    • /
    • v.5 no.2
    • /
    • pp.98-105
    • /
    • 2017
  • Smartphones are fast growing in the IT market and are the most influential devices in our daily life. Smartphones are being studied for their use in body sensor networks with excellent processing power and wireless communication technology. In this paper, we propose a coordinator design that provides data collection, classification, and display using based on Android-smartphone in multiple sensor nodes. The coordinator collects data of sensor nodes that measure biological patterns using wireless communication technologies such as Bluetooth and NFC. The coordinator constructs a network using a multiple-level scheduling algorithm for efficient data collection at multiple sensor nodes. Also, to support different protocols between heterogeneous sensors, a data sheet recording wireless communication protocol information is used. The designed coordinator used Arduino to test the performance of multiple sensor node environments.

A Software Architecture for Highly Reconfigurable Sensor Operating Systems (재구성 가능한 고성능 센서 운영체제를 위한 소프트웨어 아키텍처 설계)

  • Kim, Tae-Hwan;Kim, Hie-Cheol
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.2 no.4
    • /
    • pp.242-250
    • /
    • 2007
  • Wireless sensor networks are subject to highly heterogeneous system requirements in terms of their functionality and performance due to their broad application areas. Though the heterogeneity hinders the opportunity of developing a single universal platform for sensor networks, efforts to provide uniform, inter-operable and scalable ones for sensor networks are still essential for the growth of the industry as well as their technological advance. As a part of our work to develop such a robust platform, this paper presents the software architecture for sensor nodes with focus on our sensor node operating system and its configuration methodology. Addressing principle issues in its design space which includes programming, execution, task scheduling and software layer models, our architecture is highly reconfigurable with respect to system resources and functional requirements and also highly efficient in supporting multi-threading under small system resources.

  • PDF

A Java Virtual Machine for Sensor Networks (센서 네트워크를 위한 자바 가상 기계)

  • Kim, Seong-Woo;Lee, Jong-Min;Lee, Jung-Hwa;Shin, Jin-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.1
    • /
    • pp.13-20
    • /
    • 2008
  • Sensor network consists of a large number of sensor node distributed in the environment being sensed and controlled. The resource-constrained sensor nodes tend to have various and heterogeneous architecture. Thus, it is important to make its software environment platform-independent and reprogrammable. In this paper, we present BeeVM, a Java operating system designed for sensor networks. BeeVM offers a platform-independent Java programming environment with its efficiently executable file format and a set of class APIs for basic operating functions, sensing and wireless networking. BeeVM's high-level native interface and layered network subsystem allow complex program for sensor network to be short and readable. Our platform has been ported on two currently popular hardware platforms and we show its effectiveness through the evaluation of a simple application.

A Study for Protocol for Heterogeneous Interface in Sensor Networks within Water Restore Facilities (수질복원시설물 내 센서 네트워크 이기종간 인터페이스용 프로토콜에 관한 연구)

  • Kim, Chan;Shin, Jaekwon;Cha, Jaesang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.5
    • /
    • pp.255-260
    • /
    • 2012
  • Currently, the management system of wastewater treatment facility has magnified due to the stringent regulations for the protection of the environment. However, wastewater treatment system is insufficient in wastewater quality monitoring technology in specialized. Above all it aim one-to-one data transmission instead of one-to-n data transmission through sensor and network. And then, it lack compatibility toward communication system between different. Mainly it has observed detecting system of manual system. In this paper, we studied protocol technology about efficient data transmission between sensor and integration interface of water quality detecting interface for automated sensor network integration interface in water restoration facility. Therefore, we proved the possibility of efficient data transmission from communication system of different type through monitoring implementation of sensor network integration interface.

Hop-by-Hop Dynamic Addressing Based Routing Protocol for Monitoring of long range Underwater Pipeline

  • Abbas, Muhammad Zahid;Bakar, Kamalrulnizam Abu;Ayaz, Muhammad;Mohamed, Mohammad Hafiz;Tariq, Moeenuddin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.731-763
    • /
    • 2017
  • In Underwater Linear Sensor Networks (UW-LSN) routing process, nodes without proper address make it difficult to determine relative sensor details specially the position of the node. In addition, it effects to determine the exact leakage position with minimized delay for long range underwater pipeline monitoring. Several studies have been made to overcome the mentioned issues. However, little attention has been given to minimize communication delay using dynamic addressing schemes. This paper presents the novel solution called Hop-by-Hop Dynamic Addressing based Routing Protocol for Pipeline Monitoring (H2-DARP-PM) to deal with nodes addressing and communication delay. H2-DARP-PM assigns a dynamic hop address to every participating node in an efficient manner. Dynamic addressing mechanism employed by H2-DARP-PM differentiates the heterogeneous types of sensor nodes thereby helping to control the traffic flows between the nodes. The proposed dynamic addressing mechanism provides support in the selection of an appropriate next hop neighbour. Simulation results and analytical model illustrate that H2-DARP-PM addressing support distribution of topology into different ranges of heterogeneous sensors and sinks to mitigate the higher delay issue. One of the distinguishing characteristics of H2-DARP-PM has the capability to operate with a fewer number of sensor nodes deployed for long-range underwater pipeline monitoring.