
RESOURCE ORIENTED ARCHITECTURE FOR

MUTIMEDIA SENSOR NETWORKS

IWAIT2009
Hiroshi IWATANI, Masayuki NAKATSUKA, Yutaro TAKAYANAGI, Jiro KATTO

Dept. of Computer Science, Graduate School of Fundamental Science and Engineering

Waseda University

3-4-1 Okubo, Shinjuku-ku, Tokyo, JAPAN

E-mail: {iwatani, nakatsuka, takayanagi, katto}@katto.comm.waseda.ac.jp

ABSTRACT

Sensor network has been a hot research topic for the past

decade and has moved its phase into using multimedia

sensors such as cameras and microphones [1]. Combining

many types of sensor data will lead to more accurate and

precise information of the environment. However, the use

of sensor network data is still limited to closed

circumstances. Thus, in this paper, we propose a

web-service based framework to deploy multimedia sensor

networks. In order to unify different types of sensor data

and also to support heterogeneous client applications, we

used ROA (Resource Oriented Architecture [2]).

Keywords: multimedia sensor networks, resource
oriented architecture, sensor fusion

1. INTRODUCTION

Human life style has changed a lot since the invention of

mobile computers. Though it brought a lot of efficiency

and convenience to the world it has also brought

unnecessary displeasure. Displeasure such as ringing

phones in a middle of meetings and funerals. Also the

trouble of deciding what query to use for a search engine.

Imagine a world where all machines read the situation and

behaves itself to match the environment. There would be

no cell phones that start ringing in the middle of meetings

and the answer to our question would be what we want.

To realize such a world the most important information that

needs to be retrieved is the environmental information, the

information about the situation where the machine is. This

will lead to the use of sensor network technology. If we can

retrieve sound and visual information of the environment

we could estimate the occasion of the environment. Thus

cell phones could decide to ring or to vibrate. If we could

retrieve temperature and humidity information we could

get better answers for restaurant searching services.

1.1 Background

Multimedia Sensor Networks has become a hot research

topic in the sensor network field [1]. However the research

is still narrow and limited to certain cases. It is obvious that

by combining different types of sensors and making a

sensor fusion, the outcome of the information could be

more accurate and precise.

The problem is combining many types of sensors would be

confusing. Due to the advancement in multimedia sensors

it is now cheap and light in power to use them for sensor

networks. This leads to many types of data such as pictures,

movies, sounds, temperatures, and so on.

Thus we propose the deployment of sensor data as web

services. To unify different types of sensor data and also to

support heterogeneous client applications, we used ROA

(Resource Oriented Architecture [2]).

1.2 Related Work

We had been working on sensor network research such as

[4][5]. [4] uses signal strength from sensor nodes to

estimate the crowd density of a certain area. Also [5] uses

camera sensors to estimate the position of a human being.

It is obvious that these two researches could make up for

each other if they used both the signal strength information

and camera data information.

Since we are applying a unique URI to each sensor data

our research could be related to [7]. It is a technology to

manage information bound to a certain object or a location.

It uses a so called ucode that is a unique ID assigned to

every single objects and places. So all the information

would be linked to the ucode and users can retrieve

information using the ucode. One use case is by applying

ucodes to RFID tag embedded objects. Users with mobile

terminals would read the ucode from the tag and can

automatically get information about the object.

In the next section we talk about ROA and applying sensor

data to ROA. In section 3 we will mention on the

implementation. In section 4 we will talk about matters that

were brought up from the implementation and lastly in

section 5 we finish with the summary.

2. RESOURCE ORIENTED
ARCHITECTURE

2.1 Background

ROA was set up by Richardson, based on REST

(Representational State Transfer [3]). Before it was

established, the words SOAP (Simple Object Access

Protocol) and REST swirled around to claim that they were

456

better than the other [6]. The problem was both SOAP and

REST were not exactly an architecture thereby created

confusion. SOAP is a technology (protocol) often used for

Service Oriented Architecture (SOA). It is an xml based

envelope to put information that needs to be sent between

the server and client in SOA web services. REST in the

other hand was a way to evaluate architectures. If certain

architecture fulfills a certain form than the other, then the

architecture is more RESTful than the other. ROA was

formed so that it scores good points when evaluated by its’

RESTfulness.

Here we will give a brief explanation of methods to deploy

web services. One of the ways is Remote Procedure Call

(RPC) often used to realize SOA and the second way is

REST-RPC hybrid and the third one is ROA.

~RPC~

Using RPC to deploy new services means the service is

method-base. For example, when we want to create a blog

entry search service it would be something like

get_blogentry(). Deleting a blog entry might be

delete_blogentry(), creating a blog entry might be

post_blogentry(). This seems simple but many blog service

providers may create their original services, leading to

many methods: getblog(var), get_blog(var), get_article(var)

and so on… To use a certain service from a single provider

wouldn’t be much trouble but when creating blog searching

application from all of the blog service providers it would

be troublesome. We need to check how to use each method

and test them all.

~REST-RPC Hybrid~

This style was created in the consequence of the

SOAP-REST argumentation. Instead of deploying methods

REST-RPC Hybrid deploys URLs. Following the former

blog service example, it would be something like

http://example.com/get_blog. Arguments are connected to

the URL using “?” and “&”. The request is sent to the URI

using HTTP method GET and the response is usually in

XML format. Since the service has a URI we can check

responses using web browsers, leading to the convenience

compared to RPC. However the big problem is the

mismatch with HTTP methods. The HTTP protocol offers

methods not only GET but also POST, PUT, DELETE and

many more. However REST-RPC Hybrid would only use

GET which means deleting a blog entry would be as

follows: GET http://example.com/deleteblog?blog_id=1, an

obvious mismatch.

~ROA~

ROA services, instead of deploying methods it deploys

resources (some kind of information). Like the REST-RPC

Hybrid, ROA uses URIs to name the resources. The

difference is, it suggests to keep verbs out. So blog service

example would be http://example.com/blog_entry/1. To use

the service the 4 main HTTP methods (GET, POST, PUT,

and DELETE) are used. GET is for retrieving the resource,

POST is for creating new resources, PUT is for updating

existing resources, and DELETE is for deleting the

resources. (Also there are two other methods OPTION and

HEAD but these are utility methods so we will not talk

about it here.) To search a blog entry, it would be

something like: GET

http://example.com/blog_entry?q1=a&q2=b.

The reason to keep the methods to four basic methods is to

keep complexity out. Notice that in the RPC example, there

were many methods to the same blog searching service

(getblog(), get_blog(), get_entry()…), in ROA there would

be a lot of resources but there is no need to think about

how to use them.

2.2 ROA and Sensor Data

2.2.1 Naming

Here we talk about the naming of the resources when we

apply ROA to sensor data. Naming means how to structure

the URIs. The two main rules are:

1. mainly composed by nouns and adjectives

2. structured and ordered from broad to precise:

 (http://example.com/A/B/C would mean A⊃B⊃C)

So for sensor data it would be something like

http://example.com/sesordata/some_way_to_identify_each

_node/sensor_type. One simple way to identify each would

be a simple number. This however is not a practical way.

One of the main aspects of ROA is that by looking at the

URI, we can understand what the resource is. From the fact

that sensor nodes exist in a physical form, it must be

located somewhere. Thus we used location information to

identify each sensor node (also strongly affected by [1]):

http://example.com/sensordata/longitude,latitude/sensor_ty

pe. So the name of the resource for a camera sensor placed

at (longitude: 139.77048055555556, latitude:

35.67777222222222) would be

http://example.com/sensordata/139.77048055555556,35.67

777222222222/camera.

2.2.2 Other Sensor Nodes

Though most sensors are placed at a certain spot, there are

exceptions. One example would be sensors that are placed

on movable objects. The naming should be something like

http://example.com/sensordatas/dynamic/object_id/sensor_

type. Same reason as mentioned before, object_id should

be something that can identify the object so that a person

can determine what the resource is from the URI. For

example if it is a car, then it would be practical to use the

car number.

Another exception is GPS sensors. We do not want to know

the data of the GPS sensor if we know where it is. Thus

like the dynamic sensors it should be something like

http://example.com/GPS/object_id.

2.2.3 Retrieving the Nearest Resource

To improve usability the system should retrieve the nearest

information from any spot. Thinking about an application

on GPS sensor embedded mobile terminal, users would

457

want to retrieve sensor data near them. Thus when a user

asks for

http://example.com/sensordatas/any_value_of_longitude/an

y_value_of_latitude/sensor_type it should give

corresponding responses in order from nearest to far.

2.2.4 Methods

If we apply ROA to sensor data management web service

system, then the four basic methods would mean: ･GET: Getting the sensor data. It would be mainly used

from client applications. ･POST: Creating a new sensor data resource. It would

be used when deploying a new sensor node. ･PUT: Updating sensor data resource. It would be

mainly used from sensor nodes to keep its’ data

information updated. Also it would be used when sensor

nodes were replaced to update its’ location information. ･DELETE: Deleting the sensor data resource. It would

be used when sensor nodes gets removed.

3. IMPLEMENTATION

For the implementation we used Ruby on Rails[8]. This

framework is famous for its functionality to create network

applications. The main reason to use this framework was

because since its last major upgrade at the end of 2007, it

supported RESTful architecture development.

To retrieve longitude and latitude information and due to

the deep relation between location and the resources, we

mashed up the application with Yahoo!Maps[9]. Also to

deploy camera sensor data, we used Ustream[10] which is

a service that enables real time video broadcast over the

web. The outcome of the implementations are shown on

Fig.1, 2, and 3.

Besides the camera sensor we also implemented light and

sound resources using MOTE[11] micaZ. First we created

the resource from the web browser. Then we wrote a

simple HTTP communication program in JAVA that sends

an HTTP PUT method request to the resource with the

newest value from the sensor as arguments.

4. OBSERVATIONS

From the implementation we can observe the merits listed

below:

1. We can understand what the resource is by observing the

URIs.

2. As long as HTTP communication is possible, the data

could be accessed by any OS or any programming

languages.

3. Checking the value could be done from the web

browsers.

However there are matters to be thought of:

1. Security

2. Naming Matter

Fig. 1: Implementation.

Fig. 2: Example of camera resources.

Fig. 3: Response example for light sensor resource request.

4.1 Security

Management of the data would be important. Simple

solution would be to manage them in user base form. By

implementing authentication functions we can control the

resources. Authority to use the PUT, POST and DELETE

methods are given to only the authenticated users. By

keeping the GET method open, everyone can still access

the resources. Privacy is also a concern, especially data

from the cameras. This problem is a big topic so we will

not mention it here but mean while we have to keep in

mind where to place the cameras so that unaware people’s

458

privacy wouldn’t be violated.

4.2 Naming Matter

Though ROA clearly says to name the resources using

nouns and adjectives, and to format it as a hierarchy, there

is room for debate. In the implementation, we have

followed the rules of ROA, but there could be better ways

and still match the same rules. However looking at the

system from the client side, I believe it is one of the best

ways.

There are many ways to estimate location of users/mobile

terminals. Simplest way is to use GPS sensors. More than

40% of the cell phones in Japan have GPS sensors

embedded. Since the police department had trouble

locating emergency calls from cell phones, GPS sensor

embedded cell phones are going to grow its rate for sure.

Another way would be to use base stations. An example

would be PlaceEngine[12]. In a more local estimation there

are ways to use camera sensors and other sensors too.

From the examples above, there are many ways to express

a location. GPS sensors give the location using longitude

and latitude. It may depend on services but base station

method gives the location using addresses. Local

estimation methods give its location in the form so that it

identifies where it is within the local area. The only one

way to cover them all I believe is longitude and latitude.

There are services[13] that give longitude and latitude

information from addresses. If we want the exact position

for the local estimation location, then we can express it by

simply extending the longitude, latitude values to more

precise values. One of the merits web services have is its

characteristics that it doesn’t have constraints from the OS

or programming languages. By managing data using

longitude and latitude it would keep the information more

common and have the most flexibility for many types of

applications and terminals.

5. SUMMARY

In this paper we have proposed to deploy sensor data as

Resource Oriented Architecture web services. We also

implemented the system to check the serviceability. By

naming the resources using location information the

resources can be available for GPS sensor embedded

mobile terminals. This will lead to realize more context

aware machines and applications. Also there is big hope

that new and innovative applications may be created since

web services are open to the web and many people from

different fields can access the data.

6. REFERENCES

[1] I. Akyildiz et al.: “Wireless Multimedia Sensor

Networks: A Survey,” IEEE Wireless Comm.,

Dec.2007.

[2] L. Richardson, S. Ruby. “RESTful Web Services.”

O’Reilly, 2007.

[3] Roy Thomas Fielding. Architectural Styles and the

Design of Network-based Software Architectures.

Ph.D. thesis, Dept. of Information and Computer

Science, University of California at Irvine, 2000.

[4] M. Nakatsuka, J. Katto: A Study on Passive Crowd

Density Estimation, ICMU2008 Tokyo, JAPAN

[5] Y. Takayanagi, J.Katto: "A Study on Real-Time

Human 3D-Localization System" Technical Report of

IEICE, Vol.108, No.127, pp.73-76, Jul.2008 (in

Japanese).

[6] Michael Muehlen. Developing Web Services

Choreograph Standards—the case of REST vs. SOAP.

Decision Support Systems 40, 2005.

[7] Ubiquitous ID Technologies

http://www.uidcenter.org

[8] Ruby on Rails

http://www.rubyonrails.org/

[9] Yahoo!Maps

http://developer.yahoo.co.jp/map/

[10] Ustream

http://www.ustream.tv/

[11] Crossbow

http://www.sensor-network.net/

[12] PlaceEngine

http://www.placeengine.com/

[13] Geocoding

http://www.geocoding.jp/

459

