• Title/Summary/Keyword: Hessian comparison theorem

Search Result 4, Processing Time 0.017 seconds

TAMED EXHAUSTION FUNCTIONS AND SCHWARZ TYPE LEMMAS FOR ALMOST HERMITIAN MANIFOLDS

  • Weike, Yu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.6
    • /
    • pp.1423-1438
    • /
    • 2022
  • In this paper, we study a special exhaustion function on almost Hermitian manifolds and establish the existence result by using the Hessian comparison theorem. From the viewpoint of the exhaustion function, we establish a related Schwarz type lemma for almost holomorphic maps between two almost Hermitian manifolds. As corollaries, we deduce several versions of Schwarz and Liouville type theorems for almost holomorphic maps.

COMPARISON THEOREMS IN RIEMANN-FINSLER GEOMETRY WITH LINE RADIAL INTEGRAL CURVATURE BOUNDS AND RELATED RESULTS

  • Wu, Bing-Ye
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.2
    • /
    • pp.421-437
    • /
    • 2019
  • We establish some Hessian comparison theorems and volume comparison theorems for Riemann-Finsler manifolds under various line radial integral curvature bounds. As their applications, we obtain some results on first eigenvalue, Gromov pre-compactness and generalized Myers theorem for Riemann-Finsler manifolds under suitable line radial integral curvature bounds. Our results are new even in the Riemannian case.

ASYMPTOTIC BEHAVIOR OF HARMONIC MAPS AND EXPONENTIALLY HARMONIC FUNCTIONS

  • Chi, Dong-Pyo;Choi, Gun-Don;Chang, Jeong-Wook
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.5
    • /
    • pp.731-743
    • /
    • 2002
  • Let M be a Riemannian manifold with asymptotically non-negative curvature. We study the asymptotic behavior of the energy densities of a harmonic map and an exponentially harmonic function on M. We prove that the energy density of a bounded harmonic map vanishes at infinity when the target is a Cartan-Hadamard manifold. Also we prove that the energy density of a bounded exponentially harmonic function vanishes at infinity.