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TAMED EXHAUSTION FUNCTIONS AND SCHWARZ TYPE

LEMMAS FOR ALMOST HERMITIAN MANIFOLDS

Weike Yu

Abstract. In this paper, we study a special exhaustion function on al-

most Hermitian manifolds and establish the existence result by using the
Hessian comparison theorem. From the viewpoint of the exhaustion func-

tion, we establish a related Schwarz type lemma for almost holomorphic
maps between two almost Hermitian manifolds. As corollaries, we de-

duce several versions of Schwarz and Liouville type theorems for almost

holomorphic maps.

1. Introduction

The classical Schwarz lemma which was reformulated by Pick states that
a holomorphic map between unit discs D in C decreases the Poincaré metric.
Later, Ahlfors [1] generalized this lemma to holomorphic maps from the disc
D into a negative curved Riemannian surface. Schwarz lemma is extremely
useful in complex analysis and differential geometry, and has been extended to
several cases, such as holomorphic maps between higher dimensional complex
manifolds (cf. [4,14,16,19,27], etc.), conformal immersions and harmonic maps
between Riemannian manifolds (cf. [9,10,17,21,26], etc.), generalized holomor-
phic maps between CR manifolds and Hermitian manifolds (cf. [5, 6, 18], etc.),
almost holomorphic maps between almost Hermitian manifolds (cf. [22]) and
so on.

This paper is devoted to establishing Schwarz type lemmas for almost holo-
morphic maps between almost Hermitian manifolds from the viewpoint of the
tamed exhaustion function (see Definition 2.1). Roughly speaking, an almost
Hermitian manifold (M,J, g) is an almost complex manifold (M,J) equipped
with a Riemannian metric g compatible with the almost complex structure J .
On an almost Hermitian manifold (M,J, g), there is a preferred connection pre-
serving the metric g and the almost complex structure J , and coinciding with
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the Chern connection when J is integrable. Such a connection is called the
canonical connection, which was first introduced by Ehresman and Libermann
(cf. [7]). Although it has nontrivial torsion, it is more suitable for analytic
problems on almost Hermitian manifolds than the Levi-Civita connection. So
we will always use the canonical connection in present the paper unless other-
wise specified. Firstly, we will establish the existence of the tamed exhaustion
function on almost Hermitian manifolds by using Hessian comparison theorem.

Theorem 1.1. Let (Mm, J, g) be a complete almost Hermitian manifold with
holomorphic bisectional curvature

R(X,X, Y, Y ) ≥ −B(1 + r(x))2,(1.1)

the torsion

‖τ(X,Y )‖ ≤ A1(1 + r(x)),(1.2)

and the (2, 0) part of the curvature tensor

|R(X,Y, Y,X)| ≤ A2(1 + r(x))2,(1.3)

where r(x) is the Riemannian distance of M between a fixed point x0 and x in
M , X,Y ∈ T 1,0

x M with ‖X‖ = ‖Y ‖ = 1, and B,A1, A2 are positive constants.
Then there is a tamed exhaustion function on M in the sense of Definition 2.1.

Next, combining the techniques used in [19] and [2], we establish a Schwarz
type lemma for almost holomorphic maps from an almost Hermitian mani-
fold admitting a tamed exhaustion function into a general almost Hermitian
manifold.

Theorem 1.2. Let (Mm, J, g) be an almost Hermitian manifold with holomor-

phic sectional curvature bounded below by −k1 (k1 ≥ 0). Let (M̃n, J̃ , g̃) be an
almost Hermitian manifold with holomorphic sectional curvature bounded above
by −k2 (k2 > 0). Assume that (Mm, J, g) admits a tamed exhaustion function.

Then for any almost holomorphic map f : M → M̃ , we have

f∗g̃ ≤ k1

k2
g.(1.4)

In particular, if k1 = 0, then every almost holomorphic map is constant.

Combining Theorem 1.1 and Theorem 1.2, we obtain another version of
Schwarz type lemma where assumptions on domain and target manifolds are
all about curvatures and torsions.

Corollary 1.3. Let (Mm, J, g) be a complete almost Hermitian manifold with

holomorphic sectional curvature bounded below by −k1 (k1 ≥ 0). Let (M̃n, J̃ , g̃)
be an almost Hermitian manifold with holomorphic sectional curvature bounded
above by −k2 (k2 > 0). Assume that (Mm, J, g) satisfies (1.1), (1.2) and (1.3).

Then for any almost holomorphic map f : M → M̃ , we have

f∗g̃ ≤ k1

k2
g.(1.5)
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In particular, if k1 = 0, then every almost holomorphic map is constant.

Remark 1.4. (1) The above corollary is an extension of [25, Theorem 1], [2],
[19, Theorem 2], [16, Theorem 1.4] to the almost Hermitian case.

(2) In [22], Tosatti generalized Yau’s Schwarz lemma to the almost Hermitian
case. Compared with Tosatti’s generalization, the curvature condition on M
in Corollary 1.3 is stronger, while its curvature condition on M̃ is weaker.
Moreover, the upper bound of f∗g̃ in Corollary 1.3 is more precise.

When M is compact, the assumptions (1.1), (1.2), (1.3) are automatically
satisfied. Hence, we obtain the following:

Corollary 1.5. Let (Mm, J, g) be a compact almost Hermitian manifold with

holomorphic sectional curvature bounded below by −k1 (k1 ≥ 0). Let (M̃n, J̃ , g̃)
be an almost Hermitian manifold with holomorphic sectional curvature bounded
above by −k2 (k2 > 0). Then for any almost holomorphic map f : M → M̃ ,
we have

f∗g̃ ≤ k1

k2
g.(1.6)

In this case, we also have a Liouville type theorem as follows.

Corollary 1.6. Let (Mm, J, g) be a compact almost Hermitian manifold with

nonnegative (resp. positive) holomorphic sectional curvature. Let (M̃n, J̃ , g̃)
be an almost Hermitian manifold with negative (resp. nonpositive) holomor-

phic sectional curvature. Then any almost holomorphic map f : M → M̃ is
constant.

Remark 1.7. The above corollary has been proved in [15] by a different method,
which is an extension of [24, Theorem 1.2] to the almost Hermitian case.

Finally, we would like to thank Dr. Haojie Chen for informing us that their
recent paper [3] also independently gave a similar extension as Corollary 1.3
and also proved Corollary 1.6 by using a different method.

2. Preliminaries

In this section, we will introduce some notions and notations of almost Her-
mitian geometry (cf. [22, 23]).

Let (Mm, J) be an almost complex manifold with dimCM = m. An almost
Hermitian metric g on (M,J) is a Riemannian metric with

g(JX, JY ) = g(X,Y )(2.1)

for any tangent vectors X,Y ∈ TM . The triple (M,J, g) is referred to as
an almost Hermitian manifold. Let TM C = TM ⊗R C denote the complexi-
fied tangent space of M , and we extend the almost complex structure J and
the almost Hermitian metric g from TM to TMC by C-linearity. Let T 1,0M
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(resp. T 0,1M) denote eigenspace of J corresponding to the eigenvalue
√
−1

(resp. −
√
−1). Then one has the following decomposition:

TMC = T 1,0M ⊕ T 0,1M,(2.2)

where T 1,0M = {X−
√
−1JX : X ∈ TM} and T 0,1M = T 1,0M . We note that

by extending the almost complex structure J to forms, every m-form can be
decomposed into (p, q)-forms for each p, q ≥ 0 with p+ q = m.

Let ∇ be an affine connection on TM , which we extend C-linearly to TMC.
This connection ∇ is called an almost Hermitian connection if it satisfies

∇g = 0, ∇J = 0.(2.3)

Analogue to Riemannian geometry, the torsion of the connection ∇ is defined
by

τ(X,Y ) = ∇XY −∇YX − [X,Y ].(2.4)

Note that an almost Hermitian connection is uniquely determined by the (1, 1)-
part of the torsion τ (cf. [8]). In particular, there is a unique almost Hermitian
connection ∇ on (M,J, g) whose torsion τ has vanishing (1, 1)-part everywhere
(see [13]). Such a connection is usually called the canonical connection of the
almost Hermitian manifold.

Suppose (Mm, J, g) is an almost Hermitian manifold with canonical connec-
tion ∇. Let {ei}mi=1 be a local unitary frame field of T 1,0M , and {θi}mi=1 be its
coframe field. Then the almost Hermitian metric g can be expressed as

g =
∑
i,k

gjk̄θ
jθk̄ =

∑
j

θjθj̄ ,(2.5)

and the torsion τ may be written as

τ =
∑
i

(τ iei + τ īeī),(2.6)

where

τ i =
1

2

∑
j,k

(
τ ijkθ

j ∧ θk + τ ij̄k̄θ
j̄ ∧ θk̄

)
(2.7)

with τ ijk = −τ ikj and τ i
j̄k̄

= −τ i
k̄j̄

. Note that the (0, 2)-part of τ i is independent

of the choice of metrics, and indeed can be regarded as the Nijenhuis tensor of
the almost complex structure J (see, e.g., [23]).

According to [22], we have the structure equations for the canonical connec-
tion ∇ as follows:

dθi = −
∑
j

θij ∧ θj + τ i,(2.8)

dθij = −
∑
k

θik ∧ θkj + Ωij ,(2.9)
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with

θij + θj̄
ī

= 0,(2.10)

and

Ωij =
∑
k,l

(
1

2
Rijklθ

k ∧ θl +Rijkl̄θ
k ∧ θl̄ +

1

2
Rijk̄l̄θ

k̄ ∧ θl̄
)
,(2.11)

where θij are connection 1-forms of ∇, and Rijkl, R
i
jkl̄
, Ri

jk̄l̄
are components of

the curvature tensor of ∇, that is

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,(2.12)

R(X,Y, Z,W ) = g(R(Z,W )X,Y ).(2.13)

Set

Rjīkl = Rijkl, Rjīkl̄ = Rijkl̄, Rjīk̄l̄ = Rijk̄l̄,(2.14)

then one has the following properties (cf. [23]):

(2.15) Rjīkl = Rij̄l̄k̄, Rjīkl̄ = Rij̄lk̄,

(2.16) Rjīkl = −Rījkl = −Rjīlk, Rjīkl̄ = −Rījkl̄ = −Rjīl̄k,

(2.17) Rij̄kl̄ −Rkj̄il̄ = τ jik;l − τ
m̄
ik τ

j

l̄m̄
,

(2.18) Rij̄kl = −τ īkl;j̄ + τ īj̄m̄τ
m̄
kl ,

where “; ” means taking covariant derivatives with respect to canonical connec-
tion ∇.

Suppose X =
∑
iX

iei and Y =
∑
j Y

jej are two (1, 0) vectors. Then the
holomorphic bisectional curvature in directions X and Y is defined as∑

i,j,k,lRij̄kl̄X
iX j̄Y kY l̄(∑

iX
iX ī
) (∑

i Y
iY ī
) .(2.19)

If X = Y , the above quantity is called the holomorphic sectional curvature in
direction X. The first and second Ricci curvature are, respectively, defined by

R′kl̄ =
∑
i

Rīikl̄, R
′′
ij̄ =

∑
k

Rij̄kk̄,(2.20)

thus the scalar curvature is given by

R =
∑
k

R′kk̄ =
∑
k

R′′kk̄.(2.21)

For a smooth function u : (M,J, g) → R, we can define the Hessian of u
with respect to the canonical connection ∇ as

(∇du)(X,Y ) = Y (Xu)− (∇YX)u(2.22)
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for any X,Y ∈ TM . Set ukl̄ = (∇du)(ek, el̄). According to the Ricci identity
(cf. [28, Lemma 2.1]), we obtain

ukl̄ = ul̄k,(2.23)

thus the canonical Laplacian of u can be defined by

∆u = trace(∇du) =
∑
k

(ukk̄ + uk̄k) = 2
∑
k

(ukk̄) .(2.24)

On the other hand, let ∇LC denote the Levi-Civita connection on (M,J, g).
Then the Hessian of u with respect to ∇LC can be similarly defined as in (2.22).
From the relationship between the Levi-Civita connection and the canonical
connection (cf. [8]):〈

∇LCY X −∇YX,Z
〉

=
1

2
(〈τ(X,Y ), Z〉+ 〈τ(Y,Z), X〉 − 〈τ(Z,X), Y 〉),(2.25)

where 〈·, ·〉 is the inner product induced by the metric g. It follows that

ukl̄ − u,kl̄ =
〈
∇LCel̄ ek −∇el̄ek,∇u

〉
=

1

2

∑
i

(
τ lkiuī + τ k̄l̄̄iuī

)
,(2.26)

where u,kl̄ = (∇LCdu)(ek, el̄). Hence,

∆u−∆LCu =
∑
i,k

(
τkkiuī + τ k̄k̄īuī

)
,(2.27)

where ∆LC denotes the Laplacian with respect to ∇LC .
Suppose (M̃n, J̃ , g̃) is another almost Hermitian manifold with canonical

connection ∇̃. Let {ẽα}nα=1 be a unitary frame field of T 1,0M̃ on a domain

of M̃ , and let {θ̃α}nα=1 be its coframe field. For simplicity, we will use the

same notations as in M for the corresponding geometric data of M̃ , such as
connection 1-forms, curvature tensor and torsion, etc., but with ˜ on them.

A smooth map f : (M,J, g)→ (M̃, J̃ , g̃) is said to be almost holomorphic if

df ◦ J = J̃ ◦ df.(2.28)

Since f is almost holomorphic, there are functions fαi locally defined on M
such that

f∗θ̃α =
∑
i

fαi θ
i.(2.29)

Taking the exterior derivative of (2.29) and using the structure equations of M

and M̃ , we have ∑
i

Dfαi ∧ θi +
∑
i

fαi τ
i − f∗τ̃α = 0,(2.30)

where

Dfαi = dfαi −
∑
k

fαk θ
k
i +

∑
β

fβi θ̂
α
β =

∑
k

(
fαikθ

k + fαik̄θ
k̄
)
.(2.31)
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Note that for simplicity, we denote θ̂αβ = f∗θαβ , τ̂
α
βγ = f∗ταβγ , R̂

α
βγδ̄

= f∗Rα
βγδ̄

,

etc. From (2.30), it follows that

fαkl̄ = 0,(2.32)

fαkl = fαlk +
∑
i

fαi τ
i
kl −

∑
β,γ

fβk f
γ
l τ̂

α
βγ ,(2.33)

∑
i

fαi τ
i
k̄l̄ −

∑
β,γ

f β̄
k̄
f γ̄
l̄
τ̂αβ̄γ̄ = 0.(2.34)

Applying the exterior derivative to (2.31) and using (2.32) and the structure

equations of M and M̃ yield∑
k

Dfαlk ∧ θk +
∑
j

fαj Ωjl +
∑
k

fαlkτ
k −

∑
β

fβl f
∗Ωαβ = 0,(2.35)

where

(2.36)

Dfαlk = dfαlk −
∑
j

fαljθ
j
k −

∑
j

fαjkθ
j
l +

∑
β

fβlkθ̂
α
β

=
∑
m

(
fαlkmθ

m + fαlkm̄θ
m̄
)
.

Making use of (2.36), we deduce from (2.35) that

fαlmn = fαlnm +
∑
j

fαj R
j
lmn +

∑
k

fαlkτ
k
mn −

∑
β,γ,δ

R̂αβγδf
β
l f

γ
mf

δ
n,(2.37)

fαlmn̄ =
∑
j

fαj R
j
lmn̄ −

∑
β,γ,δ

R̂αβγδ̄f
β
l f

γ
mf

δ̄
n̄,(2.38)

∑
j

fαj R
j
lm̄n̄ +

∑
k

fαlkτ
k
m̄n̄ −

∑
β,γ,δ

R̂αβγ̄δ̄f
β
l f

γ̄
m̄f

δ̄
n̄ = 0.(2.39)

Before ending this section, we give the definition of tamed exhaustion func-
tions on almost Hermitian manifolds as follows.

Definition 2.1. Let (Mm, J, g) be an almost Hermitian manifold. A continu-
ous function u : M → R is called a tamed exhaustion function, if it satisfies

(1) u ≥ 0;
(2) u is proper, i.e., u−1((−∞, c]) is compact in M for every constant c ∈ R;
(3) There exists a constant C > 0 such that, for any p ∈ M , there are an

open neighborhood Vp of p and a C2 function v : Vp → R with

(2.40)
v(x) ≥ u(x) (∀x ∈ Vp), v(p) = u(p),

‖∇v‖(p) ≤ C, (vkl̄(p)) ≤ C(gkl̄(p)).

Here the norm ‖·‖ is induced by the metric g, the matrix (vkl̄) is the Hessian of
v with respect to the canonical connection ∇, gkl̄ are the components of almost
Hermitian metric g, and the expression A ≤ B for two Hermitian matrices
means that B −A is positive semi-definite.
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Remark 2.2. (1) The constant C in Definition 2.1 is independent of the choice
of the point p ∈ M . However, for any point p ∈ M , there always exist a
constant Cp depending on p and a C2 function v : Vp → R satisfying (2.40).

(2) This special type of exhaustion function in Definition 2.1 was first intro-
duced by Royden in the Hermitian case (cf. [19]), and the terminology “tamed
exhaustion function” was first introduced by Kim and Lee in [11].

3. Tamed exhaustion functions on almost Hermitian manifolds

In this section, we will establish the existence of tamed exhaustion functions
on almost Hermitian manifolds. For this purpose, we need the following Hessian
comparison theorem on almost Hermitian manifolds.

Lemma 3.1. Let (Mm, J, g) be a complete almost Hermitian manifold with
holomorphic bisectional curvature

R(X,X, Y, Y ) ≥ −B(1 + r(x))α,(3.1)

the torsion

‖τ(X,Y )‖ ≤ A1(1 + r(x))β ,(3.2)

and the (2, 0) part of the curvature tensor

|R(X,Y, Y,X)| ≤ A2(1 + r(x))γ ,(3.3)

where r(x) is the Riemannian distance of M from a fixed point x0 to x ∈ M ,
X,Y ∈ T 1,0

x M with ‖X‖ = ‖Y ‖ = 1, and B,A1, A2 are positive constants,
α ≥ −2, β ≥ 0, γ ≥ 0. Then(

rij̄
)
≤
{

1

r
+
[
B(1+r)α+(4

√
m+3)A2

1(1+r)2β+2A2(1+r)γ
] 1

2

}(
gij̄
)

(3.4)

holds outside the cut locus of x0.

Proof. When α = β = γ = 0, this lemma has been proved in [28]. For general
cases, we will use a similar method to prove it. Let σ(t) be a geodesic in M
with respect to ∇LC with σ(0) = x0 and ‖σ′(0)‖ = 1. Let {ei}mi=1 be a unitary
frame field of T 1,0M on a small neighborhood of σ. Since ‖∇r‖ = 1 holds
outside the cut locus of x0, we have (cf. [28, Lemma 3.2])

0 =
1

2
‖∇r‖2kl̄(3.5)

=

(∑
i

rirī

)
kl̄

=
∑
i

(rkl̄irī + rkl̄̄iri) +
∑
i

rkīril̄ +
∑
i,j

(
rīτ

j
ikrjl̄ + rkj̄τ

j̄

īl̄
ri

)
+
∑
i

rikrīl̄ +
∑
i,j

(
rjkτ

j

īl̄
ri + rīτ

j̄
ikrj̄l̄

)
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+
∑
i,j

(
Rl̄jik +

∑
m

τ m̄ik τ
j̄

l̄m̄

)
rj̄rī +

∑
i,j

(
Rkj̄īl̄ +

∑
m

τ jkmτ
m
īl̄

)
rjri

+
∑
i,j

(
Rij̄kl̄ +

∑
m

(
τ īkmτ

m
j̄l̄ + τ m̄ik τ

j

l̄m̄

))
rjrī.

Hence,

dX

dr
+X2 +AX +XA∗(3.6)

= −B∗B −B∗C − C∗B − (D +D∗)− E
= − (B∗ + C∗)(B + C) + C∗C − (D +D∗)− E
≤ C∗C − (D +D∗)− E,

where matrices X = (rkl̄), A = (
∑
j rj̄τ

l
jk), B = (rk̄l̄), C = (

∑
j τ

k
j̄l̄
rj), D =

(
∑
i,j(Rkj̄īl̄+

∑
m τ

j
kmτ

m
īl̄

)rjri), E = (
∑
i,j(Rij̄kl̄+

∑
m(τ īkmτ

m
j̄l̄

+ τ m̄ik τ
j

l̄m̄
))rjrī),

and B∗ = B
t
, C∗ = C

t
, D∗ = D

t
. Using the assumptions (3.1), (3.2), (3.3)

and making a similar argument as in [28, Theorem 2.1] yield

dX

dr
+X2 +AX +XA∗(3.7)

≤
(

1

2
B(1 + r)α +

(
2
√
m+

1

2

)
A2

1(1 + r)2β +A2(1 + r)γ
)
In,

X ≤
(

1

r
+
A1√

2

)
In as r → 0+,(3.8)

where In is the n× n identity matrix. Set

Y =

(
1

r
+ h(r)

1
2

)
In,(3.9)

where

h(r) = B(1 + r)α + (4
√
m+ 3)A2

1(1 + r)2β + 2A2(1 + r)γ .(3.10)

Then by a simple computation, we obtain

(3.11)
dY

dr
≥

−
1
r2 In, α ≥ 0,(
− 1
r2 + αB

1
2

2(1+r)1−α
2

)
In, −2 ≤ α < 0,

Y 2 ≥

(
1

r2
+ h(r) +

(4
√
m+ 3)

1
2A1(1 + r)β

r
+
B

1
2 (1 + r)

α
2

r

)
In,(3.12)

AY + Y A∗ ≥ −
√

2A1(1 + r)β
(

1

r
+ h(r)

1
2

)
In(3.13)
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≥

(
−
√

2A1(1 + r)β

r
−A2

1(1 + r)2β − 1

2
h(r)

)
In,

where (3.13) is due to

|u∗(A+A∗)u|(3.14)

≤ |
∑
j,k,l

ul̄τ
l
jkrj̄uk|+ |

∑
j,k,l

ul̄rjτ
l̄
j̄k̄uk|

≤

(∑
l

|ul|2
) 1

2


∑

l

|
∑
j,k

τ ljkrj̄uk|2
 1

2

+

∑
l

|
∑
j,k

τ l̄j̄k̄rj̄uk|
2

 1
2


≤
√

2A1(1 + r)β

for any unit column vector u = (u1, u2, . . . , um)t, and

√
2xy ≤ x2 +

1

2
y2.(3.15)

Therefore,

dY

dr
+ Y 2 +AY + Y A∗(3.16)

≥
(

1

2
B(1 + r)α +

(
2
√
m+

1

2

)
A2

1(1 + r)2β +A2(1 + r)γ
)
In

≥ dX

dr
+X2 +AX +XA∗.

From (3.8)-(3.10), it follows that

Y ≥ X as r → 0+.(3.17)

In terms of the comparison theorem for matrix Ricatti equation (cf. [20]), we
get

X ≤ Y(3.18)

outside the cut locus of x0. �

Remark 3.2. If J is integrable, then the Nijenhuis tensor τ i
j̄k̄
≡ 0 for any

i, j, k. From (2.18), it follows that the (2, 0) part of the curvature tensor always
vanishes, so the assumption (3.3) can be removed.

Making use of the above lemma, we have the following.

Theorem 3.3. Let (Mm, J, g) be an almost Hermitian manifold as in Lemma
3.1 with α = γ = 2, β = 1. Then it admits a tamed exhaustion function.

Proof. Consider the continuous function on M :

u(x) = log (1 + r(x)2),(3.19)
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where r(x) = d(x0, x) is the Riemannian distance from a fixed point x0 ∈M to
a point x in M . We will prove u is a tamed exhaustion function on M . Since
M is complete, the function u is proper. If x ∈ M \ (Cut(x0) ∪ {x0}), where
Cut(x0) denotes the cut locus of x0, then the function u is smooth near x and
satisfies

‖∇u‖(x) =
2r(x)‖∇r‖
1 + r(x)2

=
2r(x)

1 + r(x)2
≤ 1.(3.20)

Moreover, using Lemma 3.1 with α = γ = 2, β = 1, we obtain∑
i,j

uij̄(x)ξiξj =
2|
∑
i riξ

i|2

1 + r(x)2
+

2r(x)
∑
i,j rij̄ξ

iξj

1 + r(x)2
−

4r(x)2|
∑
k rkξ

k|2

(1 + r(x)2)2
(3.21)

≤
2
(∑

i |ri|2
) (∑

i |ξi|2
)

1 + r(x)2
+

2r(x)
(

1
r(x) + h(r(x))

1
2

)
1 + r(x)2

≤ 3

1 + r(x)2
+ 2C

r(x)(1 + r(x))

1 + r(x)2

for any unite vector ξ = (ξ1, ξ2, . . . , ξm), where h(r) = B(1 + r)2 + (4
√
m +

3)A2
1(1 + r)2 + 2A2(1 + r)2, and C = [B + (4

√
m + 3)A2

1 + 2A2]
1
2 . Since

limr→0+
(1+r)r
1+r2 = 0 and limr→+∞

(1+r)r
1+r2 = 1, there exists a constant C ′ inde-

pendent of x such that (1+r)r
1+r2 < C ′, so

∑
i,j uij̄(x)ξiξj < 3 + 2CC ′.

If x is a cut point of x0, let a be the distance between x0 and the nearest
cut-point of x0, and take x′1 ∈ B a

2
(x0) \ {x0} = {x ∈M : 0 < r(x) < a

2} on the
minimal geodesic between x0 and x, then d(x′1, x) ≥ a

2 . Set

v(z) = log
(

1 + (r(x′1) + d(x′1, z))
2
)

(3.22)

for any z in some small neighborhood Vx of x. Clearly, v ∈ C∞(Vx), v(x) =
u(x), v(z) ≥ u(z) for any z ∈ Vx. By a computation similar to (3.21), we
obtain ‖∇v‖ < 1 and

∑
i,j

vij̄(x)ξiξj ≤ 1

1 + r(x)2
+

2r(x)
(

1
d(x′1,x) + h(d(x′1, x))

1
2

)
1 + r(x)2

(3.23)

≤ 1 +
1

d(x′1, x)
+ 2C

r(x)(1 + r(x))

1 + r(x)2

≤ 1 +
2

a
+ 2CC ′.

Therefore, u is a tamed exhaustion function of M . �

Making a similar argument of [12, Proposition 6.1] or [11], it is easy to see
that the Omori-Yau type maximum principle holds for any almost Hermitian
manifold that admits a tamed exhaustion function.
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Proposition 3.4. Let (Mm, J, g) be an almost Hermitian manifold which ad-
mits a tamed exhaustion function. Then for any C2 function f : M → R with
supM f < +∞, there exists a sequence {xn} ⊂M such that

lim
n→∞

f(xn) = sup
M

f, lim
n→∞

‖∇f‖(xn) = 0, lim sup
n→∞

(∇df)(Xn, Xn) ≤ 0(3.24)

for any Xn ∈ T 1,0
xn M with ‖Xn‖ = 1.

Combining Theorem 3.3 and Proposition 3.4, we obtain the following corol-
lary.

Corollary 3.5. Let (Mm, J, g) be an almost Hermitian manifold as in Lemma
3.1 with α = γ = 2, β = 1. Then for any C2 function f : M → R which is
bounded above, there exists a sequence {xn} ⊂M such that (3.24) holds.

4. Schwarz type lemmas for almost Hermitian manifolds

In this section, we will give the proofs of Theorem 1.2 and Corollary 1.6.

Proof of Theorem 1.2. At each x ∈M , one can choose a unitary frame {ξi(x)}
for T 1,0M such that

f∗g̃ =
∑
i,j,α

fαi f
ᾱ
j̄ θ

iθj̄ =
∑
i

λi(x)θiθī,(4.1)

where λ1(x) ≥ λ2(x) ≥ · · · ≥ λm(x) ≥ 0 are the eigenvalues of the positive

semi-definite Hermitian matrix
(∑

α f
α
i f

ᾱ
j̄

)
x
. For simplicity, we write λ1(x)

as λ(x). Then we have

f∗g̃ ≤ λ(x)g,(4.2)

so it is sufficient to prove

λ(x) ≤ k1

k2
.(4.3)

Since the maximal eigenvalue λ may not be a C2(M) function, we can not di-
rectly use the Omori-Yau type maximum principle to estimate its upper bound.
Here we will combine the methods of [2] and [19] to prove (4.3). For this pur-
pose, we consider the following function

φ(x) = (1− εu(x))2λ(x)(4.4)

for x ∈ Dε = {p ∈ M : u(p) < 1
ε }, where u : M → R is a tamed exhaustion

function. Since u is nonnegative and proper, the closure Dε is compact. The
nonnegative function φ is continuous on Dε and vanishes on the ∂Dε, hence φ
attains its maximum at some point xε ∈ Dε. In order to estimate the upper
bound of λ(x), we want to use the maximum principle for φ at xε. However,
both u and λ(x) are only continuous but may not be twice differentiable near
xε. This can be remedied by the following method: choose any local smooth
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unitary frame field {ηi} for T 1,0M such that η1(xε) = ξ1(xε) is the eigenvector
of λ(xε). Define

λ̃ = ‖df(η1)‖2 =
∑
α

fα1 f
ᾱ
1̄ .(4.5)

It is obvious that λ̃ is smooth near xε and

λ̃(x) ≤ λ(x), λ̃(xε) = λ(xε).(4.6)

Let

φ̃(x) = (1− εv(x))2λ̃(x),(4.7)

where v : Vxε → R is the C2 function defined as in Definition 2.1. Then we
obtain

φ̃(x) ≤ (1− εu(x))2λ(x) ≤ (1− εu(xε))
2λ(xε) = φ̃(xε)(4.8)

for any x ∈ Vxε , hence φ̃(x) has a local maximum point xε. Applying the

maximum principle for φ̃(x) at xε, we deduce that

(4.9) ∇λ̃ =
2ελ̃

1− εv
∇v,

and

0 ≥ (φ̃)11̄(4.10)

= (1− εv)2λ̃11̄ − 2ε(1− εv)(λ̃1v1̄ + λ̃1̄v1)

+ 2ε2λ̃|v1|2 − 2ε(1− εv)λ̃v11̄.

Substituting (4.9) into (4.10) yields

0 ≥ (1− εv)2λ̃11̄ − 6ε2λ̃|v1|2 − 2ελ̃(1− εv)v11̄.(4.11)

From Definition 2.1, we can see that

0 ≤ |v1|2 ≤
1

2
|∇v|2 ≤ 1

2
C2, v11̄ ≤ Cg11̄ = C,(4.12)

where C is a constant defined as in Definition 2.1. Hence,

0 ≥ (1− εv)2λ̃11̄ − 3C2ε2λ̃− 2Cελ̃.(4.13)

By (2.32) and (2.38), we perform the following computation:

λ̃11̄ =

(∑
α

fα1 f
ᾱ
1̄

)
11̄

(4.14)

=

(∑
α

fα11f
ᾱ
1̄

)
1̄

=
∑
α

fα111̄f
ᾱ
1̄ +

∑
α

|fα11|2
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≥ −
∑

α,β,γ,δ

f ᾱ1̄ f
β
1 f

γ
1 f

δ̄
1̄ R̂

α
βγδ̄ +

∑
j

Rj
111̄

(∑
α

fαj f
ᾱ
1̄

)
.

In terms of the curvature assumptions for bothM andN and
(∑

α f
α
j f

ᾱ
1̄

)
(xε) =

δ1j λ̃(xε), we have, at xε,

λ̃11̄ ≥ k2λ̃
2 − k1λ̃.(4.15)

From (4.13) and (4.15), we deduce that

(1− εu(x))2λ(x) ≤ (1− εu(xε))
2λ(xε) = (1− εv(xε))

2λ̃(xε)(4.16)

≤ k1

k2
+

3C2ε2 + 2Cε

k2

for any x ∈ Dε. Let ε→ 0+, we obtain

λ(x) ≤ k1

k2
(4.17)

for any x ∈M . �

When M is compact, similar to the proof of Theorem 1.2, we can give a
simple proof of Corollary 1.5.

Proof of Corollary 1.5. Consider the largest eigenvalue λ(x) defined as in (4.2)
which is continuous on M . Assume that f is not constant, then λ(x) 6≡ 0. Since
M is compact, there exists a point x0 ∈ M such that λ(x0) = maxM λ > 0.
Choose any local smooth unitary frame field {ηi} for T 1,0M such that η1(x0)
is the eigenvector of λ(x0). Define

λ̃ = ‖df(η1)‖2 =
∑
α

fα1 f
ᾱ
1̄ .(4.18)

It is obvious that λ̃ is smooth near x0 and

λ̃(x) ≤ λ(x), λ̃(x0) = λ(x0).(4.19)

Therefore, x0 is also the local maximum point of λ̃. According to the Hessian
type Bochner formula (4.14) and the maximum principle, we have, at x0

0 ≥ λ̃11̄ ≥ −
∑

α,β,γ,δ

f ᾱ1̄ f
β
1 f

γ
1 f

δ̄
1̄ R̂

α
βγδ̄ +R1

111̄λ̃ > 0,(4.20)

which leads to a contradiction. Therefore, λ ≡ 0, i.e., f is constant. �
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