• Title/Summary/Keyword: Hessian

Search Result 110, Processing Time 0.025 seconds

Inversion of Stochastic Earthquake Model Parameters using the Modified Levenberg-Marquardt′s method in Korea (수정된 Levenberg-Marquardt 역산방법에 의한 한반도 남부의 추계학적 지진 요소 평가)

  • ;Walter Silva
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.20-27
    • /
    • 2002
  • Conventional Levenberg-Marquardt's nonlinear inversion method is simply modified by taking into account the second derivatives of the Hessian matrix so as to give robust inversion results. The weight of the second derivative terms is determined by the value of so-called λ in Levenberg-Marquardt's method. The new inversion method is applied to observed data from small-to-moderate earthquakes to simultaneously evaluate the modes parameters of the stochastic point-source model in and around the Korean Peninsula. Best estimates of the stochastic model parameters are obtained along with their statistics and compared with the previous results. Overall characteristics of the model parameters are found to be more of those of interplate than intraplate tectonic region.

  • PDF

Decentralized Control of Multiple Agents for Optimizing Target Tracking Performance and Collision Avoidance (표적 추적 성능 최적화 및 충돌 회피를 위한 다수 에이전트 분산 제어)

  • Kim, Youngjoo;Bang, Hyochoong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.9
    • /
    • pp.693-698
    • /
    • 2016
  • A decentralized control method is proposed to enable a group of robots to achieve maximum performance in multisensory target tracking while avoiding collision with the target. The decentralized control was designed based on navigation function formalism. The study showed that the multiple agent system converged to the positions providing the maximum performance by the decentralized controller, based on Lyapunov and Hessian theory. An exemplary simulation was given for a multiple agent system tracking a stationary target.

DEFORMATION SPACES OF CONVEX REAL-PROJECTIVE STRUCTURES AND HYPERBOLIC AFFINE STRUCTURES

  • Darvishzadeh, Mehdi-Reza;William M.Goldman
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.625-639
    • /
    • 1996
  • A convex $RP^n$-structure on a smooth anifold M is a representation of M as a quotient of a convex domain $\Omega \subset RP^n$ by a discrete group $\Gamma$ of collineations of $RP^n$ acting properly on $\Omega$. When M is a closed surface of genus g > 1, then the equivalence classes of such structures form a moduli space $B(M)$ homeomorphic to an open cell of dimension 16(g-1) (Goldman [2]). This cell contains the Teichmuller space $T(M)$ of M and it is of interest to know what of the rich geometric structure extends to $B(M)$. In [3], a symplectic structure on $B(M)$ is defined, which extends the symplectic structure on $T(M)$ defined by the Weil-Petersson Kahler form.

  • PDF

Cumulative Sums of Residuals in GLMM and Its Implementation

  • Choi, DoYeon;Jeong, KwangMo
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.5
    • /
    • pp.423-433
    • /
    • 2014
  • Test statistics using cumulative sums of residuals have been widely used in various regression models including generalized linear models(GLM). Recently, Pan and Lin (2005) extended this testing procedure to the generalized linear mixed models(GLMM) having random effects, in which we encounter difficulties in computing the marginal likelihood that is expressed as an integral of random effects distribution. The Gaussian quadrature algorithm is commonly used to approximate the marginal likelihood. Many commercial statistical packages provide an option to apply this type of goodness-of-fit test in GLMs but available programs are very rare for GLMMs. We suggest a computational algorithm to implement the testing procedure in GLMMs by a freely accessible R package, and also illustrate through practical examples.

A Method for Improving Accuracy of Object Recognition and Pose Estimation by Using Kinect sensor (Kinect센서를 이용한 물체 인식 및 자세 추정을 위한 정확도 개선 방법)

  • Kim, Anna;Yee, Gun Kyu;Kang, Gitae;Kim, Yong Bum;Choi, Hyouk Ryeol
    • The Journal of Korea Robotics Society
    • /
    • v.10 no.1
    • /
    • pp.16-23
    • /
    • 2015
  • This paper presents a method of improving the pose recognition accuracy of objects by using Kinect sensor. First, by using the SURF algorithm, which is one of the most widely used local features point algorithms, we modify inner parameters of the algorithm for efficient object recognition. The proposed method is adjusting the distance between the box filter, modifying Hessian matrix, and eliminating improper key points. In the second, the object orientation is estimated based on the homography. Finally the novel approach of Auto-scaling method is proposed to improve accuracy of object pose estimation. The proposed algorithm is experimentally tested with objects in the plane and its effectiveness is validated.

ASYMPTOTIC BEHAVIOR OF HARMONIC MAPS AND EXPONENTIALLY HARMONIC FUNCTIONS

  • Chi, Dong-Pyo;Choi, Gun-Don;Chang, Jeong-Wook
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.5
    • /
    • pp.731-743
    • /
    • 2002
  • Let M be a Riemannian manifold with asymptotically non-negative curvature. We study the asymptotic behavior of the energy densities of a harmonic map and an exponentially harmonic function on M. We prove that the energy density of a bounded harmonic map vanishes at infinity when the target is a Cartan-Hadamard manifold. Also we prove that the energy density of a bounded exponentially harmonic function vanishes at infinity.

Efficient Computation of Isosurface Curvatures on GPUs Based on the de Boor Algorithm (드 부어 알고리즘을 이용한 GPU에서의 효율적인 등가면 곡률 계산)

  • Kim, Minho
    • Journal of the Korea Computer Graphics Society
    • /
    • v.23 no.3
    • /
    • pp.47-54
    • /
    • 2017
  • In this paper, we propose an improved curvature-based GPU (Graphics Processing Unit) isosurface ray-casting technique. Our method adopts the fast evaluation method proposed by Sigg et al. [1] to find the isosurface, but replaces the computation of the gradient and Hessian with the de Boor algorithm. In this way, we can reduce the number of additional texture fetches from 84 to 27 thus improving the performance by up to ${\approx}30%$, depending on the platforms.

Reduced-order controller design via an iterative LMI method (반복 선형행렬부등식을 이용한 축소차수 제어기 설계)

  • Kim, Seog-Joo;Kwon, Soon-Man;Lee, Jong-Moo;Kim, Chun-Kyung;Cheon, Jong-Min
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2242-2244
    • /
    • 2004
  • This paper deals with the design of a reduced-order stabilizing controller for the linear system. The coupled lineal matrix inequality (LMI) problem subject to a rank condition is solved by a sequential semidefinite programming (SDP) approach. The nonconvex rank constraint is incorporated into a strictly linear penalty function, and the computation of the gradient and Hessian function for the Newton method is not required. The penalty factor and related term are updated iteratively. Therefore the overall procedure leads to a successive LMI relaxation method. Extensive numerical experiments illustrate the proposed algorithm.

  • PDF

GLOBAL CONVERGENCE OF A MODIFIED BFGS-TYPE METHOD FOR UNCONSTRAINED NON-CONVEX MINIMIZATION

  • Guo, Qiang;Liu, Jian-Guo
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.325-331
    • /
    • 2007
  • To the unconstrained programme of non-convex function, this article give a modified BFGS algorithm associated with the general line search model. The idea of the algorithm is to modify the approximate Hessian matrix for obtaining the descent direction and guaranteeing the efficacious of the new quasi-Newton iteration equation $B_{k+1}s_k=y^*_k,\;where\;y^*_k$ is the sum of $y_k\;and\;A_ks_k,\;and\;A_k$ is some matrix. The global convergence properties of the algorithm associating with the general form of line search is proved.

A Multiple Features Video Copy Detection Algorithm Based on a SURF Descriptor

  • Hou, Yanyan;Wang, Xiuzhen;Liu, Sanrong
    • Journal of Information Processing Systems
    • /
    • v.12 no.3
    • /
    • pp.502-510
    • /
    • 2016
  • Considering video copy transform diversity, a multi-feature video copy detection algorithm based on a Speeded-Up Robust Features (SURF) local descriptor is proposed in this paper. Video copy coarse detection is done by an ordinal measure (OM) algorithm after the video is preprocessed. If the matching result is greater than the specified threshold, the video copy fine detection is done based on a SURF descriptor and a box filter is used to extract integral video. In order to improve video copy detection speed, the Hessian matrix trace of the SURF descriptor is used to pre-match, and dimension reduction is done to the traditional SURF feature vector for video matching. Our experimental results indicate that video copy detection precision and recall are greatly improved compared with traditional algorithms, and that our proposed multiple features algorithm has good robustness and discrimination accuracy, as it demonstrated that video detection speed was also improved.