• 제목/요약/키워드: Herringbone-Grooved Hydrodynamic Bearing

검색결과 10건 처리시간 0.024초

공동현상을 고려한 소형 정밀 모터용 빗살무늬 저널베어링의 해석 (Analysis of a Hydrodynamic Herringbone-Grooved Journal Bearing in a Small Precision Motor Considering Cavitation)

  • 창동일;장건희
    • 대한기계학회논문집A
    • /
    • 제24권11호
    • /
    • pp.2680-2687
    • /
    • 2000
  • The Reynolds equation, incorporating Elrods cavitation algorithm, is discretized on a rectangular grid in computational space through coordinate mapping in order to accurately analyze a herringbone grooved journal bearing of a spindle motor in a computer hard disk drive. The pressure distribution and cavitation area are determined by using the finite volume method. Predicted results are compared to experimental data of previous researchers. It was found that positive pressure is developed within the converging section of the bearing and that a cavity occurs in the diverging section. Cavitation has been neglected in the previous analysis of the herringbone grooved bearing. Load capacity and bearing torque are increased due to the increased of eccentricity and L/D and the decrease of the grooved width ratio. The maximum load capacity was found to occur at a groove angle of 30 degrees while bearing torque remains constant due to the variation of the groove angle. The cavitation region is significantly decreased with the inclusion of herringbone grooves. However, the region increases with the increase of the eccentricity, L/D, groove angle and the rotational speed and the decrease of the grooved width ratio.

레이저 프린터에 사용되는 빗살무늬 유체동압 베어링과 스캐너 모터의 특성 (Characteristics of Herringbone-Grooved Hydrodynamic Bearing and Scanner Motor for Laser Beam Printer)

  • 정성훈;이영제;정대현
    • 대한기계학회논문집A
    • /
    • 제24권1호
    • /
    • pp.269-274
    • /
    • 2000
  • Frictions and electrical contact voltages of the herringbone-grooved hydrodynamic bearing(HHB) were 9, measured to use in a laser scanner motor. This bearing with varying loads, speeds, oil viscosity, and radial clearances successfully operated up to 28,000rpm and 0.5N. Experimental results under various environments confirmed that this bearing had excellent performance with low friction force, and operated without contact between shaft and sleeve.

Frictional and Electrical Characteristics of Herringbone Grooved Bearing for Scanner motor

  • Jeong, Sung-Hoon;Lee, Young-Ze
    • KSTLE International Journal
    • /
    • 제2권2호
    • /
    • pp.146-149
    • /
    • 2001
  • Recently, laser printers have been developed to have high-speed laser scanner with hydrodynamic bearings. Among the bearings, herringbone grooved bearing (HGB) produces hydrodynamic pressure by high-speed rotating and so make the surfaces between the shaft and sleeve separated. Accordingly, the bearings with non-contact rotation are suitable to high-speed rotating and have long bearing life and reliability. HGB is a kind of journal bearing and uses oil for a lubricant. HGB has excellent stiffness and load carrying capacity. Also, HGB is leakage-free due to groove pumping action. Consequently, HGB is valuable to be applied to high-performance devices such as hard disk drive, copier, and so on.

  • PDF

공기윤활 빗살무늬 동압 저어널베어링의 부하특성에 관한 연구 (A Study on the Load Characteristics of Air-Lubricated Hydrodynamic Herringbone-Grooved Journal Bearing)

  • 강경필;임윤철
    • Tribology and Lubricants
    • /
    • 제10권1호
    • /
    • pp.27-34
    • /
    • 1994
  • An analysis based on the narrow groove theory is not suitable for the case of insufficient number of grooves or of non-rectangular shaped grooves. In this study, we present the solution of the compressible Reynolds equation for the air-lubricated hydrodynamic herringbonegrooved journal bearing with circular shaped grooves. From the results calculated numerically, optimal design values are obtained for the herringbone-grooved journal bearing.

홈이 회전하는 빗살무늬 저널 베어링의 안정성 해석 (Stability Analysis of a Herringbone Grooved Journal Bearing with Rotating Grooves)

  • 윤진욱;장건희
    • 한국소음진동공학회논문집
    • /
    • 제13권4호
    • /
    • pp.247-257
    • /
    • 2003
  • This paper presents an analytical method to Investigate the stability of a hydrodynamic journal bearing with rotating herringbone grooves. The dynamic coefficients of the hydrodynamic Journal bearing are calculated using the FEM and the perturbation method. The linear equations of motion can be represented as a parametrically excited system because the dynamic coefficients have time-varying components due to the rotating grooves, even in the steady state. Their solution can be assumed as a Fourier series expansion so that the equations of motion can be rewritten as simultaneous algebraic equations with respect to the Fourier coefficients. Then, stability can be determined by solving Hill's infinite determinant of these algebraic equations. The validity of this research is proved by the comparison of the stability chart with the time response of the whirl radius obtained from the equations of motion. This research shows that the instability of the hydrodynamic journal bearing with rotating herringbone grooves increases with increasing eccentricity and with decreasing groove number, which play the major roles in increasing the average and variation of stiffness coefficients, respectively. It also shows that a high rotational speed is another source of instability by increasing the stiffness coefficients without changing the damping coefficients.

홈이 회전하는 빗살무의 저널 베어링의 안정성 해석 (Stability Analysis of a Herringbone Grooved Journal Bearing with Rotating Grooves)

  • 윤진욱;장건희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.166-174
    • /
    • 2002
  • This paper presents an analytical method to Investigate the stability of a hydrodynamic journal bearing with rotating herringbone grooves. The dynamic coefficients of the hydrodynamic journal bearing are calculated using the FEM and the perturbation method. The linear equations of motion can be represented as a parametrically excited system because the dynamic coefficients have time-varying components due to the rotating grooves, even in the steady state. Their solution can be assumed as a Fourier series expansion so that the equations of motion can be rewritten as simultaneous algebraic equations with respect to the Fourier coefficients. Then, stability can be determined by solving Hill's infinite determinant of these algebraic equations. The validity of this research is proved by the comparison of the stability chart with the time response of the whirl radius obtained from the equations of motion. This research shows that the instability of the hydrodynamic journal bearing with rotating herringbone grooves increases with increasing eccentricity and with decreasing groove number, which play the major roles in increasing the average and variation of stiffness coefficients, respectively. It also shows that a high rotational speed is another source of instability by increasing the stiffness coefficients without changing the damping coefficients.

  • PDF

여러 가지 형식의 동압 공기 윤활 스러스트 베어링의 성능에 대한 비교 연구 (A Comparison study on the Performance of Several Types of Air Lubricated Hydrodynamic Thrust Bearings)

  • 강지훈;김경웅
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2001년도 제34회 추계학술대회 개최
    • /
    • pp.197-203
    • /
    • 2001
  • In this paper, numerical analyses were undertaken to calculate the static and dynamic performances of step-pocket, inward pumping spiral grooved, outward pumping spiral grooved and herringbone grooved bearings. For each bearing, optimal values for various design parameters were obtained to maximize the load capacity and the stiffness and bearing performances were calculated. The optimized performances of these bearings were compared to conclude that the performance of step-pocket bearing is better than the other bearings.

  • PDF

여러가지 형식의 동압 공기 윤활 스러스트 베어링의 성능에 대한 연구 (A Study on the Performances of Hydrodynamic Air Lubricated Thrust Bearings of Several Types)

  • 강지훈;김경웅
    • Tribology and Lubricants
    • /
    • 제18권5호
    • /
    • pp.364-370
    • /
    • 2002
  • In this paper, numerical analyses were undertaken to calculate the static and dynamic performances of step-pocket, inward pumping spiral grooved, outward pumping spiral grooved and herringbone grooved bearings. For each bearing, optimal values for various design parameters were obtained to maximize the load capacity and the stiffness and bearing performances were calculated. The optimized performances of these bearings were compared to conclude that the performance of step-pocket bearing is better than the other bearings.

고성능 하드 디스크 드라이브 개발을 위한 유체베어링 스핀들 모터의 특성분석(현장개발사례: SAMSUNG HDD ′SPINPOINT POLARIS SERIES′) (Experimental Characterization of Hydrodynamic Bearing Spindle Motor for High Performance Hard Disk Drive)

  • 손영;황태연;한윤식;강성우
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.930-935
    • /
    • 2001
  • The experimental characterization of hydrodynamic bearing spindle motor is performed for the practical implementation of high-performance hard disk drive system. Firstly, the design concept of hydrodynamic bearing for the disk drive system is addressed including the herringbone grooved journal bearing, the spiral grooved thrust bearing, capillary seal design, and the viscous pumping of fluid. Secondly, the experimental evaluation is performed for the disk drive system in which the hydrodynamic bearing spindle motor is implemented and its dynamic performances are compared with conventional ball-bearing spindle motor. The key parameters include NRRO(Non Repeatable Run-Out), disk dynamics, acoustics, and resultant PES (Position Error Signal). Finally, the external gyro-exciting test results including 200k CSS(Continuous Start-Stop) on three angular attitudes(0,90, 180 degree) are presented in order to verify the practical reliability of disk drive system subject to the gyro-motion of hydrodynamic bearing spindle motor.

  • PDF

HDD 스핀들 시스템에 사용되는 저널과 트러스트가 결합된 유체 동압 베어링의 홈 위치에 따른 동특성 해석 (Dynamic Characteristics of a Coupled Journal and Thrust Hydrodynamic Bearing in a HDD Spindle System Due to Groove Location)

  • 윤진욱;장건희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 I
    • /
    • pp.304-311
    • /
    • 2001
  • This research numerically analyzes the dynamic characteristics of a coupled journal and thrust hydrodynamic bearing due to its groove location which has the static load due to the weight of a rotor in the axial direction and the dynamic load due to its mass unbalance in the radial direction. The Reynolds equation is transformed to solve a plain member rotating type of journal bearing(PMRJ), a grooved member rotating type of journal bearing (GMRJ), a plain member rotating type of thrust bearing (PMRT) and a grooved member rotating type of thrust bearing (GMRT). FEM is used to solve the Reynolds equations in order to calculate the pressure distribution in a fluid film. Reaction forces and friction torque are obtained by integrating the pressure and shear stress along the fluid film, respectively. Dynamic behaviors, such as whirl radius or floating height of a rotor, are determined by solving its nonlinear equations of motion with the Runge-Kutta method. This research shows that the groove location affects the pressure distribution in the fluid film and consequently the dynamic performance of a HDD spindle system.

  • PDF