• Title/Summary/Keyword: Herpes

Search Result 425, Processing Time 0.022 seconds

Multiple Microvenular Hemangioma Clinicopathologically Mimicking Early Stage Kaposi Sarcoma: A Case Report (초기 단계의 카포시육종과 임상조직학적으로 유사한 다발성미세소정맥혈관종 1예)

  • Eun, Dong Hyuk;Kim, Seok Min;Kim, Jun Young;Han, Man-Hoon;Lee, Seok-Jong
    • Korean journal of dermatology
    • /
    • v.56 no.10
    • /
    • pp.631-635
    • /
    • 2018
  • Microvenular hemangioma (MVH) is a rare acquired benign vascular neoplasm, which presents commonly as a solitary purple-to-red nodule or plaque measuring approximately 10 mm in diameter. MVH occurs primarily on the extremities or the trunk. Most lesions are solitary, and multiple lesions are rare. Histopathological features of MVH include numerous, scattered, thin and irregularly branching small vessels in the dermis and endothelial cells without atypia. Owing to similarities in clinical morphology and histopathological features, MVH may often be indistinguishable from the early patch stage of Kaposi sarcoma. Immunohistochemical (IHC) analysis helps differentiate between the 2 diseases. The results of IHC tests in patients with MVH show positive staining for CD31 and smooth muscle actin and typically, negative staining for the human herpes virus 8 antigen. We report a rare case of multiple MVH clinically mimicking the early patch stage of Kaposi sarcoma in a 63-year-old woman who presented with a 3-year history of slowly growing, compressible, soft, bluish-purple macules and plaques on the trunk and right arm.

Analytical Approach to the Literature of Cupping Therapy

  • Koran, Serhat;Irban, Arzu
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.16 no.3
    • /
    • pp.1-14
    • /
    • 2021
  • PURPOSE: This study aims to reveal the prevalence, therapeutic efficacy and undesirable side effects of cupping therapy all over the world from past to present. METHODS: This meta-analysis is based on the data obtained by scanning the keyword "cupping therapy" from the Pub-Med system, which is an international database. The date range has been set as 1950-2019. Local databases were not included. Cupping therapy studies combined with other complementary therapies such as acupuncture, moxa and hirudotherapy are also included in the meta-analysis. RESULTS: A total of 381 scientific studies were found on cupping therapy. Of these studies 127 wererandomized controlled trials (RCSs). Cupping treatment has been found effective in studies of painful conditions such as herpes zoster pain, fibromyalgia, back pain, neck pain, headache and acute injury pain. In addition, the effectiveness of cupping therapy was found to be high in studies related to bone / muscular system diseases such as osteoarthritis, rheumatoid arthritis, ankylosing spondylitis, gout, carpal tunnel syndrome, cervical spondylosis. In addition, cupping treatment is also promising in studies on skin diseases, neurological diseases, respiratory system diseases and cardiovascular system diseases. CONCLUSION: Recently, there has been an increase in the number of RCSs related to cupping therapy. The vast majority of this increase has been made in European and American countries rather than in Far Eastern countries. Studies on cupping therapy, which have been and will be carried out in the future, will provide evidence-based indication of whether cupping therapy is effective. and it will allow more patients to benefit from this treatment, which has a very low rate of side effects and complications.

Evaluation of the efficacy of unipolar and bipolar spinal dorsal root ganglion radiofrequency thermocoagulation in the treatment of postherpetic neuralgia

  • Zhu, Jianjun;Luo, Ge;He, Qiuli;Yao, Ming
    • The Korean Journal of Pain
    • /
    • v.35 no.1
    • /
    • pp.114-123
    • /
    • 2022
  • Background: Different views have been proposed on the radiofrequency treatment modes and parameters of radiofrequency thermocoagulation of the spinal dorsal root ganglion for the treatment of postherpetic neuralgia (PHN). It is urgent to identify a more effective therapy for patients with PHN. Methods: Patients who underwent radiofrequency thermocoagulation therapy for PHN were retrospectively reviewed and were divided into a radiofrequency thermocoagulation (CRF) and double neddles radiofrequency thermocoagulation (DCRF). The pain scores (numerical rating scale, NRS) were evaluated at the following time points: before the operation, 1 day, 3 months, 6 months, 1 year, and 2 years after operation. The incidence of complications and the degree of pain relief were evaluated. The in vitro ovalbumin experiment was used to indicate the effects of radiofrequency thermocoagulation. Results: Compared with the preoperative NRS scores, the postoperative NRS scores decreased significantly; the NRS scores of the DCRF group was lower than that of the CRF group at all time points from 6 months to 2 years following the operation. The total effective rate of the DCRF group was significantly higher than that of the CRF group at 2 years following the operation. The incidence of numbness in the DCRF group was higher than that noted in the CRF group. The ovalbumin experiments in vitro indicated that the effects of radiofrequency thermocoagulation were optimal when the distance between the two needles was 5 mm. Conclusions: DCRF with a 5 mm spacing exhibits a longer duration and higher effective rate in the treatment of PHN and is worth promoting.

Split genome-based retroviral replicating vectors achieve efficient gene delivery and therapeutic effect in a human glioblastoma xenograft model

  • Moonkyung, Kang;Ayoung, Song;Jiyoung, Kim;Se Hun, Kang;Sang-Jin, Lee;Yeon-Soo, Kim
    • BMB Reports
    • /
    • v.55 no.12
    • /
    • pp.615-620
    • /
    • 2022
  • The murine leukemia virus-based semi-retroviral replicating vectors (MuLV-based sRRV) had been developed to improve safety and transgene capacity for cancer gene therapy. However, despite the apparent advantages of the sRRV, improvements in the in vivo transduction efficiency are still required to deliver therapeutic genes efficiently for clinical use. In this study, we established a gibbon ape leukemia virus (GaLV) envelope-pseudotyped semi-replication-competent retrovirus vector system (spRRV) which is composed of two transcomplementing replication-defective retroviral vectors termed MuLV-Gag-Pol and GaLV-Env. We found that the spRRV shows considerable improvement in efficiencies of gene transfer and spreading in both human glioblastoma cells and pre-established human glioblastoma mouse model compared with an sRRV system. When treated with ganciclovir after intratumoral injection of each vector system into pre-established U-87 MG glioblastomas, the group of mice injected with spRRV expressing the herpes simplex virus type 1-thymidine kinase (HSV1-tk) gene showed a survival rate of 100% for more than 150 days, but all control groups of mice (HSV1-tk/PBS-treated and GFP/GCV-treated groups) died within 45 days after tumor injection. In conclusion, these findings sug-gest that intratumoral delivery of the HSV1-tk gene by the spRRV system is worthy of development in clinical trials for the treatment of malignant solid tumors.

Evaluation of Viral Inactivation Efficacy of a Continuous Flow Ultraviolet-C Reactor (UVivatec) (연속 유동 Ultraviolet-C 반응기(UVivatec)의 바이러스 불활화 효과 평가)

  • Bae, Jung-Eun;Jeong, Eun-Kyo;Lee, Jae-Il;Lee, Jeong-Im;Kim, In-Seop;Kim, Jong-Su
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.4
    • /
    • pp.377-382
    • /
    • 2009
  • Viral safety is an important prerequisite for clinical preparations of all biopharmaceuticals derived from plasma, cell lines, or tissues of human or animal origin. To ensure the safety, implementation of multiple viral clearance (inactivation and/or removal) steps has been highly recommended for manufacturing of biopharmaceuticals. Of the possible viral clearance strategies, Ultraviolet-C (UVC) irradiation has been known as an effective viral inactivating method. However it has been dismissed by biopharmaceutical industry as a result of the potential for protein damage and the difficulty in delivering uniform doses. Recently a continuous flow UVC reactor (UVivatec) was developed to provide highly efficient mixing and maximize virus exposure to the UV light. In order to investigate the effectiveness of UVivatec to inactivate viruses without causing significant protein damage, the feasibility of the UVC irradiation process was studied with a commercial therapeutic protein. Recovery yield in the optimized condition of $3,000\;J/m^2$ irradiation was more than 98%. The efficacy and robustness of the UVC reactor was evaluated with regard to the inactivation of human immunodeficiency virus (HIV), hepatitis A virus (HAV), bovine herpes virus (BHV), bovine viral diarrhea virus (BVDV), porcine parvovirus (PPV), bovine parvovirus (BPV), minute virus of mice (MVM), reovirus type 3 (REO), and bovine parainfluenza virus type 3 (BPIV). Non enveloped viruses (HAV, PPV, BPV, MVM, and REO) were completely inactivated to undetectable levels by $3,000\;J/m^2$ irradiation. Enveloped viruses such as HIV, BVDV, and BPIV were completely inactivated to undetectable levels. However BHV was incompletely inactivated with slight residual infectivity remaining even after $3,000\;J/m^2$ irradiation. The log reduction factors achieved by UVC irradiation were ${\geq}3.89$ for HIV, ${\geq}5.27$ for HAV, 5.29 for BHV, ${\geq}5.96$ for BVDV, ${\geq}4.37$ for PPV, ${\geq}3.55$ for BPV, ${\geq}3.51$ for MVM, ${\geq}4.20$ for REO, and ${\geq}4.15$ for BPIV. These results indicate that UVC irradiation using UVivatec was very effective and robust in inactivating all the viruses tested.

Novel Gap Junction Molecules, Connexin 37, Enhances the Bystander Effect in HSVtk/GCV Gene Therapy (Herpes Simplex Virus thymidine Kinase/Ganciclovir 유전자 치료에서 새로운 간격결합분자 Connexin 37에 의한 방관자 효과의 증가)

  • Kim, Sun Young;Yi, Ho Keun;Lee, Jung Chang;Hwang, Dong Jin;Hwang, Pyoung Han;Lee, Dae Yeol;Cho, Soo Chul
    • Clinical and Experimental Pediatrics
    • /
    • v.46 no.6
    • /
    • pp.541-547
    • /
    • 2003
  • Purpose : Gap junction intercellular communication(GJIC) is an important mechanism of the bystander effect in herpes simplex thymidine kinase/ganciclovir(HSVtk/GCV) gene therapy Therefore, we attempted to enhance the bystander effect in vitro by exogenous overexpressing connexin 37(Cx37) in cells to increase GJIC. Methods : NIH3T3 cells were transfected with the Cx37 and HSVtk gene or the HSVtk gene alone by the calcium phosphate method, and we detected their expression from these cells by RT-PCR. GCV-mediated cytotoxicity and the bystander effect of each transfectant was then assessed and compared. Results : Cells transfected with HSVtk became sensitive to low concentration of GCV. We found significantly increased cytotoxicity in HSVtk/GCV gene therapy after introduction of the HSVtk and Cx37 genes together compared with the cytotoxicity seen after introduction of the HSVtk gene in vitro. Co-expression of the HSVtk and Cx37 genes potentiates HSVtk/GCV gene therapy through the bystander effect. Conclusion : These results indicated that the increase of GJIC using Cx37 have potentiated the bystander effect of HSVtk/GCV therapy, and may be a new approach to improve response in suicidal cancer gene therapy.

Virus Inactivation during the Manufacture of a Collagen Type I from Bovine Hides (소 가죽 유래 Type I Collagen 생산 공정에서 바이러스 불활화)

  • Bae, Jung Eun;Kim, Chan Kyung;Kim, Sungpo;Yang, Eun Kyung;Kim, In Seop
    • Korean Journal of Microbiology
    • /
    • v.48 no.4
    • /
    • pp.314-318
    • /
    • 2012
  • Most types of collagen used for biomedical applications, such as cell therapy and tissue engineering, are derived from animal tissues. Therefore, special precautions must be taken during the production of these proteins in order to assure against the possibility of the products transmitting infectious diseases to the recipients. The ability to remove and/or inactivate known and potential viral contaminants during the manufacturing process is an ever-increasingly important parameter in assessing the safety of biomedical products. The purpose of this study was to evaluate the efficacies of the 70% ethanol treatment and pepsin treatment at pH 2.0 for the inactivation of bovine viruses during the manufacture of collagen type I from bovine hides. A variety of experimental model viruses for bovine viruses including bovine herpes virus (BHV), bovine viral diarrhea virus (BVDV), bovine parainfluenza 3 virus (BPIV-3), and bovine parvovirus (BPV), were chosen for the evaluation of viral inactivation efficacy. BHV, BVDV, BPIV-3, and BPV were effectively inactivated to undetectable levels within 1 h of 70% ethanol treatment for 24 h, with log reduction factors of ${\geq}5.58$, ${\geq}5.32$, ${\geq}5.11$, and ${\geq}3.42$, respectively. BHV, BVDV, BPIV-3, and BPV were also effectively inactivated to undetectable levels within 5 days of pepsin treatment for 14 days, with the log reduction factors of ${\geq}7.08$, ${\geq}6.60$, ${\geq}5.60$, and ${\geq}3.59$, respectively. The cumulative virus reduction factors of BHV, BVDV, BPIV-3, and BPV were ${\geq}12.66$, ${\geq}11.92$, ${\geq}10.71$, and ${\geq}7.01$. These results indicate that the production process for collagen type I from bovine hides has a sufficient virus-reducing capacity to achieve a high margin of virus safety.

Virus Inactivation Processes for the Manufacture of Human Acellular Dermal Matrix (인체이식용 무세포 진피 제조를 위한 바이러스 불활화 공정)

  • Bae, Jung-Eun;Kim, Jin-Young;Ahn, Jae-Hyoung;Choi, Da-Mi;Jeong, Hyo-Sun;Lee, Dong-Hyuck;Kim, In-Seop
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.2
    • /
    • pp.168-176
    • /
    • 2010
  • Acellular dermal matrix (ADM), produced by decellularization from human cadaveric skin, has been used for various biomedical applications. A manufacturing process for ADM ($SureDerm^{TM}$) using tri-n-butyl phospahate (TnBP) and deoxycholic acids as the decellularization solution has been developed. The manufacturing process for $SureDerm^{TM}$ has 70% ethanol treatment and ethylene oxide gas sterilization for inactivating infectious microorganisms. The purpose of this study was to examine the efficacy of the 70% ethanol treatment, decellularization process using 0.1% TnBP and 2% deoxycholic acids, and EO gas sterilization process in the inactivation of viruses. A variety of experimental model viruses for human pathogens, including the human immunodeficiency virus type 1 (HIV-1), bovine herpes virus (BHV), bovine viral diarrhoea virus (BVDV), hepatitis A virus (HAV), and porcine parvovirus (PPV) were all selected for this study. Enveloped viruses such as HIV-1, BHV, and BVDV were effectively inactivated to undetectable levels by 70% ethanol treatment. However HAV and PPV showed high resistance to 70% ethanol treatment with the log reduction factors of 1.85 and 1.15, respectively. HIV-1, BHV, and BVDV were effectively inactivated to undetectable levels by decellularization process. All the viruses tested were completely inactivated to undetectable levels by EO gas treatment. The cumulative log reduction factors of HIV-1, BHV, BVDV, HAV, and PPV were $\geq12.71$, $\geq18.08$, $\geq14.92$, $\geq6.57$, and $\geq7.18$, respectively. These results indicate that the production process for $SureDerm^{TM}$ has a sufficient virus-reducing capacity to achieve a high margin of the virus safety.

Diagnostic Evaluation of the BioFire® Meningitis/Encephalitis Panel: A Pilot Study Including Febrile Infants Younger than 90 Days (BioFire® Meningitis/Encephalitis Panel의 진단적 유용성 평가: 90일 미만 발열영아에서의 예비 연구)

  • Kim, Kyung Min;Park, Ji Young;Park, Kyoung Un;Sohn, Young Joo;Choi, Youn Young;Han, Mi Seon;Choi, Eun Hwa
    • Pediatric Infection and Vaccine
    • /
    • v.28 no.2
    • /
    • pp.92-100
    • /
    • 2021
  • Purpose: Rapid detection of etiologic organisms is crucial for initiating appropriate therapy in patients with central nervous system (CNS) infection. This study aimed to evaluate the diagnostic value of the BioFire® Meningitis/Encephalitis (ME) panel in detecting etiologic organisms in cerebrospinal fluid (CSF) samples from febrile infants. Methods: CSF samples from infants aged <90 days who were evaluated for fever were collected between January 2016 and July 2019 at the Seoul National University Children's Hospital. We performed BioFire® ME panel testing of CSF samples that had been used for CSF analysis and conventional tests (bacterial culture, Xpert® enterovirus assay, and herpes simplex virus-1 and -2 polymerase chain reaction) and stored at -70℃ until further use. Results: In total, 72 (24 pathogen-identified and 48 pathogen-unidentified) CSF samples were included. Using BioFire® ME panel testing, 41 (85.4%) of the 48 pathogen-unidentified CSF samples yielded negative results and 22 (91.7%) of the 24 pathogen-identified CSF samples yielded the same results (enterovirus in 19, Streptococcus agalactiae in 2, and Streptococcus pneumoniae in 1) as those obtained using the conventional tests, thereby resulting in an overall agreement of 87.5% (63/72). Six of the 7 pathogen-unidentified samples were positive for human parechovirus (HPeV) via BioFire® ME panel testing. Conclusions: Compared with the currently available etiologic tests for CNS infection, BioFire® ME panel testing demonstrated a high agreement score for pathogen-identified samples and enabled HPeV detection in young infants. The clinical utility and cost-effectiveness of BioFire® ME panel testing in children must be evaluated for its wider application.

Combined Effect of Ganciclovir and Vidarabine on the Replication, DNA Synthesis, and Gene Expression of Acyclovir-resistant Herpes Simplex Virus (Acyclovir저항성 Herpes Simplex Virus의 복제, DNA합성 및 형질 발현에 미치는 Ganciclovir 및 Vidarabine의 병용효과에 관한 연구)

  • Yang, Young-Tai;Cheong, Dong-Kyun;Mori, Masakazu
    • The Korean Journal of Pharmacology
    • /
    • v.25 no.1
    • /
    • pp.115-134
    • /
    • 1989
  • Combined effects of ganciclovir (GCV) and vidarabine (ara-A) on the replication, DNA synthesis, and gene expression of wild type-1 herpes simplex virus (HSV-1) and three acyclovir (ACV)-resistant HSV-1 mutants were studied. These mutants include a virus expressing no thymidine kinase $(ACV^r)$, a virus expressing thymidine kinase with altered substrate specificity $(IUdR^r)$, and a mutant expressing altered DNA polymerase $(PAA^r5)$. GCV, an agent activated by herpesvirus specific thymidine kinase, showed potent antiviral activity against the wild type HSV-1(KOS) and DNA polymerase mutant $(PAA^r5)$. The ACV-resistant mutants with thymidine kinase gene $(ACV^r\;and\;IUdR^r)$ were resistant to GCV. All tested wild type HSV-1 or ACV-resistant HSV-1 mutants did not display resistance to vidarabine (are-A). Combined GCV and ara-A showed potentiating synergistic antiviral activity against wild type KOS and $PAA^r5$, and showed subadditive combnined ativiral activity against thymidine kinase mutants. Combined GCV and ara-A more significantly inhibited the viral DNA synthesis in wild type KOS and $PAA^r5-infected$ cells to a greater extent than either agent alone, but the synergism was not determined in $ACV^r$ or $IUdR^r-infected$ cells. These data clearly indicate that combined GCV and ara-A therapy might be useful for the treatment of infections caused by wild type HSV-1 or ACV-resistant HSV-1 with DNA polymerase mutation. ACV-resistant viruses with the mutation in thymidine kinase gene are also, resistant to GCV, but susecptible to ara-A, indicating that ara-A would the drug of choice for the treatment of ACV-resistant HSV-1 which does not express thymidine kinase or expresses thymidine kinase with altered substrate specificity. While the synthesis of viral ${\alpha}-proteins$ of wild type HSV-1 was not affected by ACV, GCV, ara-A, or combined GCV and ara-A, the synthesis of ${\beta}-proteins$ was slightly but significantly increased at the later stage of viral infection by the antiviral agents. The synthesis of ${\gamma}-proteins$ of wild type HSV- 1 was significantly inhibited by ACV, GCV, ara-A, and combined GCV and ara-A. Combined GCV $(5-{\mu}M)$ and ara-A $(100-{\mu}M)$ also significantly altered the expression of viral ${\beta}-and$ ${\gamma}-proteins$, of which efffct was similar to that of GCV $(10-{\mu}M)$ alone. Although ACV at the concentration of $10-{\mu}M$ did not alter the expression of ${\alpha}-$, ${\beta}-$, and ${\gamma}-proteins$ of ACV-resistant $PAA^r5$, GCV and ara-A significantly alter the epression of ${\beta}-and$ ${\gamma}-proteins$, not ${\alpha}-protein$, as same manner as they altered the expression of those proteins in cells inffcted with wild type HSV-1. Combined GCV $(5-{\mu}M)$ and ara-A $(100-{\mu}M)$ altered the expression ${\beta}-and$ ${\gamma}-proteins$ in $PAA^r5$ infected cells, and the effect of combined regimen was comparable of that of GCV $(10-{\mu}M)$. These data indicate that the alteration in the expression of ${\beta}-and$ ${\gamma}-proteins$ in wild type HSV-1 or $PAA^r5$ infected cells could be more significantly affected by combined GCV and are-A than individual GCV or ara-A. In view of the fact that (a) viral ${\alpha}-$, ${\beta}-$, and ${\gamma}-proteins$ are synthesized in a cascade manner; (b) ${\beta}-proteins$ are essential for the synthesis of viral DNA; (c) the synthesis of ${\beta}-proteins$ are inhibited by ${\gamma}-proteins$; and (d) most ${\gamma}-proteins$ are made from the newly synthesized progeny virus, it is suggested that GCV and ara-A, alone or in combination, primarily inhibit the synthesis of viral DNA, and by doing so might exhibit their antiherpetic activity. The alteration in viral protein synthesis in the presence of tested antiviral agents could result from the alteration in viral DNA synthesis. From the present study, it can be concluded that (a) combined GCV and ara-A therapy would be beneficial for the control of inffctions caused by wild type HSV-1 or ACV-resistant DNA polymerase mutants; (b) the combined synergistic activity of GCV and ara-A is due to further decrease in the viral DNA by the combined regimen; (c) ara-A is the drug of choice for the infection caused by ACV-resistant HSV-1 with thymidine kinase mutation; and (d) the alteration in viral protein synthesis by GCV and ars-A, alone or in combination, is mostly due to the decreased synthesis of viral DAN.

  • PDF