• Title/Summary/Keyword: Hereditary

Search Result 507, Processing Time 0.024 seconds

Hereditary Colorectal Cancer (유전성 대장암)

  • Kim, Duck-Woo
    • Journal of Genetic Medicine
    • /
    • v.7 no.1
    • /
    • pp.24-36
    • /
    • 2010
  • Colorectal cancer is one of the most steeply increasing malignancies in Korea. Among 398,824 new patients recorded by the Korea Central Cancer Registry between 2003 and 2005, 47,915 cases involved colorectal cancers, accounting for 12.0 % of all malignancies. In 2002, total number of colorectal cancer cases had accounted for 11.2 % of all malignancies. Hereditary syndromes are the source of approximately 5% to 15% of overall colorectal cancer cases. Hereditary colorectal cancers are divided into two types: hereditary nonpolyposis colorectal cancer (HNPCC), and cancers associated with hereditary colorectal polyposis, including familial adenomatous polyposis (FAP), Peutz-Jeghers syndrome, juvenile polyposis, and the recently reported hMutYH (MYH)-associated polyposis (MAP). Hereditary colorectal cancers have unique clinical features distinct from sporadic cancer because these are due to germline mutations of the causative genes; (i) early age-of-onset of cancer, (ii) frequent association with synchronous or metachronous tumors, (iii) frequent association with extracolonic manifestations. The management strategy for patients with hereditary colorectal cancer is quite different from that for sporadic cancer. Furthermore, screening, genetic counseling, and surveillance for at-risk familial member are also important. A well-organized registry can plays a central role in the surveillance and management of families affected by hereditary colorectal cancers. Here, we discuss each type of hereditary colorectal cancer, focusing on the clinical and genetic characteristics, management, genetic screening, and surveillance.

Genetics of Hereditary Peripheral Neuropathies (유전성 말초신경병의 유전학)

  • Cho, Sun-Young;Choi, Byung-Ok
    • Journal of Genetic Medicine
    • /
    • v.6 no.1
    • /
    • pp.25-37
    • /
    • 2009
  • Hereditary peripheral neuropathies can be categorized as hereditary motor and sensory neuropathies (HMSN), hereditary motor neuropathies (HMN), and hereditary sensory neuropathies (HSN). HMSN, HMN, and HSN are further subdivided into several subtypes. Here, we review the most recent findings in the molecular diagnosis and therapeutic strategy for hereditary peripheral neuropathies. The products of genes associated with hereditary peripheral neuropathy phenotypes are important for neuronal structure maintenance, axonal transport, nerve signal transduction, and functions related to the cellular integrity. Identifying the molecular basis of hereditary peripheral neuropathy and studying the relevant genes and their functions is important to understand the pathophysiological mechanisms of these neurodegenerative disorders, as well as the processes involved in the normal development and function of the peripheral nervous system. These advances and the better understanding of the pathogenesis of peripheral neuropathies represent a challenge for the diagnoses and managements of hereditary peripheral neuropathy patients in developing future supportive and curative therapies.

  • PDF

w-INJECTIVE MODULES AND w-SEMI-HEREDITARY RINGS

  • Wang, Fanggui;Kim, Hwankoo
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.3
    • /
    • pp.509-525
    • /
    • 2014
  • Let R be a commutative ring with identity. An R-module M is said to be w-projective if $Ext\frac{1}{R}$(M,N) is GV-torsion for any torsion-free w-module N. In this paper, we define a ring R to be w-semi-hereditary if every finite type ideal of R is w-projective. To characterize w-semi-hereditary rings, we introduce the concept of w-injective modules and study some basic properties of w-injective modules. Using these concepts, we show that R is w-semi-hereditary if and only if the total quotient ring T(R) of R is a von Neumann regular ring and $R_m$ is a valuation domain for any maximal w-ideal m of R. It is also shown that a connected ring R is w-semi-hereditary if and only if R is a Pr$\ddot{u}$fer v-multiplication domain.

Hereditary cancer and genetic counseling (유전성 암과 유전상담)

  • Jeong, Seung-Yong
    • Journal of Genetic Medicine
    • /
    • v.4 no.1
    • /
    • pp.15-21
    • /
    • 2007
  • Hereditary syndromes cause approximately 5 to 10% of overall cancer cases. Cancer related with genetic syndromes are found elsewhere, including stomach, breast, colorectum, ovary, brain and so on. Because hereditary cancers are due to germline mutations, these patients have unique clinical features distinct from sporadic cancer. Generally these features include (i) early age-of onset of cancer, (ii) frequent association with synchronous or metachronous tumors, (iii) frequent bilateral involvement in paired organs (iv) frequent association with other site tumors or characteristic clinical manifestation specific to each genetic syndrome. Due to these differences, the management strategy for patients with hereditary cancer is quite different from that for sporadic cancer. Additionally, there are important screening and surveillance implications for family members. Genetic counselling is prerequisite to these families for risk assessment by pedigree analysis, and guidance to clinical or genetic testing. The genes responsible for these syndromes has recently identified, as a result, genetic testing has become important determining factor in clinical decisions.

  • PDF

Progressive Dynamic Equinovarus Deformity in Hereditary Spastic Paraplegia - A Case Report- (유전성 연축성 양하지 마비 환자에서의 족부 진행성 동적 첨내반족 -1예 보고-)

  • Bae, Su-Young;Seo, In-Seock
    • Journal of Korean Foot and Ankle Society
    • /
    • v.8 no.1
    • /
    • pp.111-113
    • /
    • 2004
  • In neurogenic equinovarus deformity, surgical intervention such as tendon transfer or osteotomy can be expected to improve symptoms. However, in rare cases of hereditary spastic paraplegia, the deformity and paralysis gradually progress. So limited operation and early post-operative rehabilitation are preferred to aggressive operation. We would like to report our clinical experience with one case of hereditary spastic paraplegia patient with reference review. A 40 year-old male, given tendon transfer of ankle and foot and tendo achilles lengthening 10 years ago, complained about aggravated spastic paraplegia which resulted in dynamic equinovarus and limited walking ability since his operation. Family history showed limited walking ability of his father with gradually progressing spastic paralysis and he was diagnosed as hereditary spastic paraplegia type I. We had performed a limited operation such as tendo achilles and tibialis posterior lengthening to induce plantigrade standing and walking with crutch. As a result, the patient was able to maintain a stabilized standing posture and walk after the operation. Hereditary spastic paraplegia presents with a progressive paralysis which limits rehabilitation after tendon transfer, and the symptoms can be aggravated. Therefore, considering potential hereditary neurogenic disorders in paients with equinovarus deformity and performing limited operative procedures seem to be important.

  • PDF

Genes and SNPs Associated with Non-hereditary and Hereditary Colorectal Cancer

  • Nassiri, Mohammadreza;Kooshyar, Mohammad Mahdi;Roudbar, Zahra;Mahdavi, Morteza;Doosti, Mohammad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5609-5614
    • /
    • 2013
  • Background: Colorectal cancer is the third most common cancer in both men and women in the world and the second leading cause of cancer-related deaths. The incidence of colorectal cancer has increased in Iran in the past three decades and is now considered as a serious problem for our society. This cancer has two types hereditary and non-hereditary, 80% of cases being the latter. Considering that the relationship between SNPs with diseases is a concern, many researchers believed that they offer valuable markers for identifying genes responsible for susceptibility to common diseases. In some cases, they are direct causes of human disease. One SNP can increase risk of cancer, but when considering the rate of overlap and frequency of DNA repair pathways, it might be expected that SNP alone cannot affect the final result of cancer, although several SNPs together can exert a significant influence. Therefore identification of these SNPs is very important. The most important loci which include mutations are: MLH1, MSH2, PMS2, APC, MUTYH, SMAD7, STK11, $XRCC_3$, $DNMT_1$, MTHFR, Exo1, $XRCC_1$ and VDR. Presence of SNPs in these genes decreases or increases risk of colorectal cancer. Materials and Methods: In this article we reviewed the Genes and SNPs associated with non-hereditary and hereditary of colorectal cancer that recently were reported from candidate gene y, meta-analysis and GWAS studies. Results: As with other cancers, colorectal cancer is associated with SNPs in gene loci. Generally, by exploring SNPs, it is feasible to predict the risk of developing colorectal cancer and thus establishing proper preventive measures. Conclusions: SNPs of genes associated with colorectal cancer can be used as a marker SNP panel as a potential tool for improving cancer diagnosis and treatment planning.

Full hereditary $C^{*}$-subalgebras of crossed products

  • Jeong, Ja A.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.30 no.2
    • /
    • pp.193-199
    • /
    • 1993
  • A hereditary $C^{*}$-subalgebra B of a $C^{*}$-algebra A is said to be full if B is not contained in any proper closed two-sided ideal in A, so each hereditary $C^{*}$-subalgebra of a simple $C^{*}$-algebra is always full. It is well known that every $C^{*}$-algebra is strong Morita equivalent to its full hereditary $C^{*}$-subalgebra, but the strong Morita equivalence of a $C^{*}$-algebra A and its hereditary $C^{*}$-subalgebra B does not imply the fullness of B, ingeneral. We present the following lemma for our computational convenience in the course of the proof of the main theorem. Note that $L_{B}$, $L_{B}$$^{*}$ and $L_{B}$ $L_{B}$$^{*}$ are all .alpha.-invariant whenever B is .alpha.-invariant under the action .alpha. of G.a. of G.a. of G.a. of G.f G.

  • PDF

Coexistence of Gilbert Syndrome and Hereditary Spherocytosis in a Child Presenting with Extreme Jaundice

  • Lee, Jae Hee;Moon, Kyung Rye
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.17 no.4
    • /
    • pp.266-269
    • /
    • 2014
  • Gilbert syndrome is the most common inherited disorder of bilirubin glucuronidation. It is characterized by intermittent episodes of jaundice in the absence of hepatocellular disease or hemolysis. Hereditary spherocytosis is the most common inherited hemolytic anemia and is characterized by spherical, osmotically fragile erythrocytes that are selectively trapped by the spleen. The patients have variable degrees of anemia, jaundice, and splenomegaly. Hereditary spherocytosis usually leads to mild-to-moderate elevation of serum bilirubin levels. Severe hyperbilirubinemia compared with the degree of hemolysis should be lead to suspicion of additional clinical conditions such as Gilbert syndrome or thalassemia. We present the case of a 12-year-old boy with extreme jaundice and nausea. The diagnosis of hereditary spherocytosis was confirmed by osmotic fragility test results and that of Gilbert syndrome by genetic analysis findings.

PULLBACKS OF 𝓒-HEREDITARY DOMAINS

  • Pu, Yongyan;Tang, Gaohua;Wang, Fanggui
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.4
    • /
    • pp.1093-1101
    • /
    • 2018
  • Let (RDTF, M) be a Milnor square. In this paper, it is proved that R is a ${\mathcal{C}}$-hereditary domain if and only if both D and T are ${\mathcal{C}}$-hereditary domains; R is an almost perfect domain if and only if D is a field and T is an almost perfect domain; R is a Matlis domain if and only if T is a Matlis domain. Furthermore, to give a negative answer to Lee, s question, we construct a counter example which is a C-hereditary domain R with $w.gl.dim(R)={\infty}$.