• Title/Summary/Keyword: Herbicide-tolerant GM zoysiagrass

Search Result 4, Processing Time 0.016 seconds

Allergenicity and toxicity evaluation of the PAT protein expressed in herbicide-tolerant genetically modified Zoysia japonica (제초제저항성 GM 잔디에서 발현된 PAT 단백질의 알레르겐 유발 가능성 및 독성 평가)

  • Jeong, Hye-Rin;Sun, Hyeon-Jin;Kang, Ji-Nam;Kang, Hong-Gyu;Lee, Hyo-Yeon
    • Journal of Plant Biotechnology
    • /
    • v.47 no.4
    • /
    • pp.316-323
    • /
    • 2020
  • This study aimed to evaluate the potential allergenicity and oral toxicity of the phosphinothricin acetyltransferase (PAT) protein expressed in Zoysia japonica, a herbicide-tolerant genetically modified (GM) zoysiagrass. In silico analysis of PAT showed no similarities with any known allergenic or toxic proteins, with <35% amino acid sequence homology with known allergens across a length of 80 amino acids and no continuous eight amino acid identity with known allergens. The PAT protein expressed in Z. japonica degraded very rapidly in the simulated gastric fluid in the presence of pepsin, and, no glycosylation of PAT was observed. The oral toxicity test revealed no mortality or toxic effect in mice following PAT administration at 4,000 mg/kg body weight. Our findings indicate that the PAT protein expressed in Zoysia japonica does not exhibit allergenic or toxic properties.

Environmental risk assessment of genetically modified Herbicide-Tolerant zoysiagrass (Event: Jeju Green21) (제초제저항성 들잔디(Zoysia japonica Steud.) 이벤트 Jeju Green21의 환경위해성평가)

  • Bae, Tae-Woong;Kang, Hong-Gyu;Song, In-Ja;Sun, Hyeon-Jin;Ko, Suk-Min;Song, Pill-Soon;Lee, Hyo-Yeon
    • Journal of Plant Biotechnology
    • /
    • v.38 no.2
    • /
    • pp.105-116
    • /
    • 2011
  • Transgenic zoysiagrass (Zoysia japonica Steud.) expressing the bar gene inserted in the plant genome has been generated previously through Agrobacterium tumefaciens-mediated transformation. The GM zoysiagrass (event: JG21) permits efficient management of weed control of widely cultivated zoysiagrass fields, reducing the frequency and cost of using various herbicides for weed control. Now we have carried out the environmental risk assessment of JG21 prior to applying to the governmental regulatory agency for the commercial release of the GM turf grass outside of test plots. The morphological phenotypes, molecular analysis, weediness and gene flow from each test plot of JG21 and wild-type zoysiagrasses have been evaluated by selectively analyzing environmental effects. There were no marked differences in morphological phenotypes between JG21 and wild-type grasses. The JG21 retained its stable integration in the host plant in T1 generation, exhibiting a 3:1 segregation ratio according to the Mendelian genetics. We confirmed the copy number (1) of JG21 by using Southern blot analysis, as the transgenic plants were tolerant to ammonium glufosinate throughout the culture period. From cross-fertilization and gene flow studies, we found a 9% cross-pollination rate at the center of JG21 field and 0% at distances over 3 m from the field. The JG21 and wild-type zoysiagrass plants are not considered "weed" because zoysiagrasses generally are not dominant and do not spread into weedy areas easily. We assessed the horizontal gene transfer (HGT) of the transgene DNA to soil microorganisms from JG21 and wild-type plants. The bar gene was not detected from the total genomic DNA extracted from each rhizosphere soil of GM and non-GM Zoysia grass fields. Through the monitoring of JG21 transgene's unintentional release into the environment, we found no evidence for either pollen mediated gene flow of zoysiagrass or seed dispersal from the test field within a 3 km radius of the natural habitat.

Environmental Monitoring of Herbicide Tolerant Genetically Modified Zoysiagrass (Zoysia japonica) around Confined Field Trials (제초제저항성 유전자변형 들잔디의 시험 격리포장 주변 환경방출 모니터링)

  • Lee, Bumkyu;Park, Kee Woong;Kim, Chang-Gi;Kang, Hong-Gyu;Sun, Hyeon-Jin;Kwon, Yong-Ik;Song, In-Ja;Ryu, Tae-Hun;Lee, Hyo-Yeon
    • Weed & Turfgrass Science
    • /
    • v.3 no.4
    • /
    • pp.305-311
    • /
    • 2014
  • The cultivation area and use of genetically modified (GM) crops have been increased continuously over the world. Seed distribution and transgenes to environmental ecosystem is one of the most important factors in risk assessment and risk management of GM crop. Safe management for the development and commercialization of GM crops is required according to The Act on Transboundary Movements of Living Modified Organisms,etc (LMO Act) in Korea. This study was conducted to setup the environmental monitoring system of GM zoysiagrass (event JG21 and JG21-MS). The monitoring was performed in 4 GMO confined fields, Sungwhan, Ochang, Jeju University and Jeju Namwon. In the result of monitoring, we could not found any gene flow and distribution of GM zoysiagrass in the 3 fields, but one spill of JG21 was found in the Namwon field in 2012. These results suggest that continuous monitoring is necessary to detect the occurrence of GM zoysiagrass for preventing genetic contamination in natural environment.

Selection of Male-sterile and Dwarfism Genetically Modified Zoysia japonica through Gamma Irradiation (감마선 처리에 의한 웅성불임 및 왜성형질의 유전자변형 들잔디(Zoysia japonica Steud.) 선발)

  • Bae, Tae-Woong;Song, In-Ja;Kang, Hong-Gyu;Jeong, Ok-Cheol;Sun, Hyeon-Jin;Ko, Suk-Min;Lim, Pyung-Ok;Song, Pill-Soon;Song, Sung Jun;Lee, Hyo-Yeon
    • Journal of Radiation Industry
    • /
    • v.4 no.3
    • /
    • pp.239-246
    • /
    • 2010
  • The aim of this study is selection of the male-sterile plant for inhibiting transgene flow through gamma-irradiation ($^{60}Co$) at the pollination and fertilization cycle of herbicide-tolerant genetically modified (GM) zoysiagrass (Zoysia japonica Steud.). High frequencies of plant mutations were obtained about 18% from $M_1$ generation at the doses (10 to 50 Gy). We also found that some $M_1$ plants showed male-sterile plants using de-husked seeds and comparison of stainable pollen using $KI-I_2$ solution. Besides the effects of irradiation on pollination and fertilization cycle, various other mutations like dwarf, cold tolerance, increasing grains and mass were observed. Four of dwarfism plants were selected through comparison of morphological characteristic between control and mutants during 4 years. These results demonstrated that the gamma-irradiation on pollination and fertilization cycle is very effective to induce the various mutations, and the male-sterile mutants are useful for controlling transgene flow and developing of high quality turfgasses.