• Title/Summary/Keyword: Hepatotoxicity

Search Result 796, Processing Time 0.028 seconds

Hepatic Gene Expression Analysis of 1, 1-Dichloroethylene Treated Mice

  • Yoon, Seok-Joo;Oh, Jung-Hwa;Park, Han-Jin;Kim, Yong-Bum
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.2
    • /
    • pp.119-126
    • /
    • 2007
  • 1, 1-dichloroethylene (DCE) is well known hepatotoxicant as a model acute hepatotoxicity and selectively injure the bile canalicular membrane of centrilobular hepatocytes. In this study, we investigated hepatic gene expression and histopathological changes in response to DCE treatment. DCE was administered once daily at 20 mg/kg up to 14 days via intraperitoneal injection. Five mice were used in each test group and were sacrificed at 1, 7, and 14 days. Serum biochemical and histopathological analysis were performed for evaluation of hepatotoxicity level. Direct bilirubin and total bilirubin activities were slightly elevated in treated group at 7 days. DCE treatment for 7 days resulted in centrilobular hepatocyte hypertrophy and hepatocyte vacuolation, and mild hepatocyte vacuolation and high hepatocyte basophilia were observed in 14 days treated group. One hundred twenty three up-regulated genes and 445 down-regulated genes with over 2-fold changes between treated and control group at each time point were used for pathway analysis. These data may contribute in understanding the molecular mechanism DCE-induced hepatotoxicity.

Effects of Mori Folium and Crataegus pinnatifida Leave Extracts on $CC1_4$-induced Hepatotoxicity in Rats (상엽과 산사엽 추출물이 사염화 탄소로 유발된 흰쥐의 간 손상에 미치는 영향)

  • 김형진;김중권;황완균;함인혜;권석형;황보식;김홍진
    • YAKHAK HOEJI
    • /
    • v.47 no.4
    • /
    • pp.206-211
    • /
    • 2003
  • This study was performed to investigate the effect of Mori Folium and Crataegus pinnatifida leave extracts on liver damage induced by CC1$_4$ in rats. 30% and 60% methanol extracts of Mori Folium and Crataegus pinnatifida leaves were administered orally at the dose of 10 mg/kg on every day for 6 days and liver damage was induced by intraperitoneal injection of $CCl_4$ (0.4 ml/kg) on 6th day. 30% Methanol extracts of Mori Folium treated group showed significant protective effect on hepatotoxicity with the lowest Glutamic Oxaloacetic Transaminase (GOT) and Glutamic Pyruvic Transaminase (GPT). The low density lipoprotein (LDL) levels of 30% methanol extracts of Mori Folium and Crataegus pinnatifida leave and 60% methanol extracts of Mori Folium treated groups were significantly lower than normal group, respectively. In particular, LDL level of 30% Mori Folium extracts treated group was significantly decreased compared to $CCl_4$ treated group. These results support that Mori Folium and Crataegus pinnatifida leave extracts are hepatoprotective effects against hepatotoxicity induced by $CCl_4$.

The Optimization of Method for Prediction of Drug-Induced Liver Injury Using HepG2 Cells Cultured with Human Liver Microsomes (Human Liver Microsomes과 HepG2 세포를 이용한 약물유래 간독성 평가 방법의 최적화)

  • Choi, Jong Min;Jeon, Jang Su;Kim, Sang Kyum
    • YAKHAK HOEJI
    • /
    • v.59 no.5
    • /
    • pp.201-206
    • /
    • 2015
  • The aim of the present study was to optimize in vitro method for the prediction of drug-induced liver injury using human liver microsomes (HLM). Cytotoxicity test of cyclophosphamide and acetaminophen in HepG2 cells cultured with HLM showed that the newly established condition using 0.375 mg/ml HLM for 24 hr incubation was comparable or more sensitive than the previously established condition using 0.75 mg/ml HLM for 12 hr incubation. Although the cytotoxic effect of troglitazone was completely attenuated by 0.75 mg/ml HLM, it was augmented by 0.375 mg/ml HLM in the presence of the NADPH-generating system. The cytotoxic effect of chlormezanone, a withdrawn drug due to hepatotoxicity in human, was increased by HLM in the presence of the NADPH-generating system. In contrast, the cytotoxic effect of methapyrilene, a withdrawn drug due to hepatotoxicity in rats, was decreased by HLM in the presence of the NADPH-generating system. The present study suggests that the optimized in vitro method using HLM can be useful for the prediction of drug-induced hepatotoxicity.

Modification of C11, C28, C2,3,23 or C2,23,28 Functional Groups on Asiatic Acid and Evaluation of Hepatoprotective Effects

  • Zhao, Long-Xuan;Park, Hyeung-Geun;Jew, Sang-Sup;Lee, Mi-Kyeong;Kim, Young-Choong;Thapa, Pritam;Karki, Radha;Jahng, Yurng-Dong;Jeong, Byeong-Seon;Lee, Eung-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.6
    • /
    • pp.970-976
    • /
    • 2007
  • For the development of novel hepatoprotective agents, C11, C28, C2,3,23 or C2,23,28 functional groups on asiatic acid were modified, and their hepatoprotective effects were evaluated. Most of the prepared compounds displayed potent hepatoprotective activities against CCl4- and galactosamine (GaIN)-induced hepatotoxicity. Especially, compounds 16 and 20 showed the most significant hepatoprotective effects against GaIN-induced hepatotoxicity (54.2% and 46.4% protection at 50 mM, respectively).

Protective Effect of Ginseng on Bromobenzene-Induced Hepatotoxicity in Mice (Mouse Liver의 Cytosolic Epoxide Hydrolase 활성도에 미치는 인삼 사포닌 분획의 영향)

  • Huh Keun;Jang Byung-Su;Park Jong-Min
    • Proceedings of the Ginseng society Conference
    • /
    • 1988.08a
    • /
    • pp.39-42
    • /
    • 1988
  • We have studied the mechanism by examing the effect of ginseng on the epoxide hydrolase which is catabolized the reactive intermetabolite of bromobenzene. and bromobenzene-induced hepatotoxicity. It was observed that ginseng saponin fraction protects against bromobenzene-induced hepatotoxicity in mice as evidenced 1. increased the epoxide hydrolase activity. 2. lower serum transaminase activity. 3. decreased the formation of lipid peroxide. These results suggested that the inducing effect of ginseng on the epoxide hydrolase is believed to be a possible detoxication mechanism for the bromobenzene toxicity in mice.

  • PDF

Toxicity and Changes in Hepatic Metabolizing Enzyme System Induced by Repeated Administration of Pectenotoxin 2 Isolated from Marine Sponges (해면체에서 추출한 Pectenotoxin 2의 마우스에서의 반복적인 투여에 의한 독성 및 간대사효소계에 주는 영향)

  • Yoon, Mi-Young;Kim, Young-Chul
    • Korean Journal of Pharmacognosy
    • /
    • v.28 no.4
    • /
    • pp.280-285
    • /
    • 1997
  • Pectenotoxin 2 (PTX2), isolated from marine sponges, was examined for its hepatotoxic potential using male ICR mice. PTX2 $(20\;or\;100\;{\mu}g/kg/day,\;ip)$ was administered to mice repeatedly for one or two week. Histopathological examination revealed an increase in granularity in the liver from the mice treated with PTX2. PTX2 did not alter the parameters for hepatotoxicity and nephrotoxicity such as sorbitol dehydrogenase (SDH), alanine aminotransferase (ALT), aspartate aminotransferase (AST) and blood urea nitrogen (BUN). Cytochrome P-450, cytochrome $b_5$, or NADPH cytochrome c reductase was net changed by repeated administration of PTX2. Hepatic microsomal activity of p-nitroanisole O-demethylase, but not aminopyrine N-demethylase, was slightly depressed by PTX2 administerd repeatedly $(100\;{\mu}g/kg/day,\;ip)$ fur 2 weeks. The toxicity of PTX2 $(200\;{\mu}g/kg/day,\;ip)$ was determined in mice pretreated with a metabolic inducer or inhibitor such as phenobarbital, 3-methyl-cholanthrene, $CoCl_2$, or SKF 525-A. Significant alterations in lethality and hepatotoxicity of PTX2 were observed in mice pretreated with a metabolic modulator. The results suggest that liver seems to be the target organ for PTX2 toxicity and also that induction of the PTX2 toxicity may be associated with hepatic drug metabolizing activity.

  • PDF

Effect of Zinc-enriched Yeast FF-10 Strain on the Alcoholic Hepatotoxicity in Alcohol Feeding Rats

  • Cha, Jae-Young;Heo, Jin-Sun;Cho, Young-Su
    • Food Science and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.1207-1213
    • /
    • 2008
  • The possible protective effects of highly zinc-containing yeast Saccharomyces cerevisiae, FF-10 strain, isolated from tropical fruit rambutan on acute alcoholic liver injury in rats were evaluated. Zinc concentration in this strain was 30.6mg%. The activities of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and $\gamma$-glutamyl transpeptidase ($\gamma$-GTP) were highly increased when alcohol was treated, relative to the normal rats. Also, a highly significant increase in the blood alcohol and acetaldehyde levels by alcohol treatment was observed. Administration of FF-10 strain markedly prevented alcohol-induced elevation of the activities of serum ALT, AST, and $\gamma$-GTP, and the levels of blood alcohol and acetaldehyde, and these reduced levels reached to that of normal rats. As compared with alcohol treated control rats, the FF-10 strain supplementation showed highly decreased the triglyceride concentration in serum. Alcohol treatment induced the marked accumulation of small lipid droplets, hepatocytes necrosis, and inflammation, but FF-10 strain administration attenuated to alcohol-induced accumulation of small lipid droplets and hepatocyte necrosis in the liver. Therefore, the current finding suggests that zinc-enriched yeast FF-10 strain isolated from tropical fruit rambutan may have protective effect against alcohol-induced hepatotoxicity.

Hepatoprotective effect of ultrasonicated ginseng berry extract on a rat mild bile duct ligation model

  • Nam, Yoonjin;Ko, Sung Kwon;Sohn, Uy Dong
    • Journal of Ginseng Research
    • /
    • v.43 no.4
    • /
    • pp.606-617
    • /
    • 2019
  • Background: The Panax ginseng berry extract (GBE) is well known to have an antidiabetic effect. The aim of this study is to evaluate and investigate the protective effect of ultrasonication-processed P. ginseng berry extract (UGBE) compared with GBE on liver fibrosis induced by mild bile duct ligation (MBDL) model in rats. After ultrasonication process, the composition ratio of ginsenoside in GBE was changed. The component ratio of ginsenosides Rh1, Rh4, Rg2, Rg3, Rk1, Rk3, and F4 in the extract was elevated. Methods: In this study, the protective effect of the newly developed UGBE was evaluated on hepatotoxicity and neuronal damage in MBDL model. Silymarin (150 mg/kg) was used for positive control. UGBE (100 mg/kg, 250 mg/kg, 500 mg/kg), GBE (250 mg/kg), and silymarin (150 mg/kg) were orally administered for 6 weeks after MBDL surgery. Results: The MBDL surgery induced severe hepatotoxicity that leads to liver inflammation in rats. Also, the serum ammonia level was increased by MBDL surgery. However, the liver dysfunction of MBDL surgery-operated rats was attenuated by UGBE treatment via myeloid differentiation factor 88-dependent Toll-like receptor 4 signaling pathways. Conclusion: UGBE has a protective effect on liver fibrosis induced by MBDL in rats through inhibition of the TLR4 signaling pathway in liver.

Protective effects of Hizikia fusiforme and Chlorella sp. extracts against lead acetate-induced hepatotoxicity in rats

  • Park, Joo hyun;Choi, Jeong-Wook;Lee, Min-Kyeong;Choi, Youn Hee;Nam, Taek-Jeong
    • Fisheries and Aquatic Sciences
    • /
    • v.22 no.1
    • /
    • pp.2.1-2.9
    • /
    • 2019
  • In the present study, the protective effects of Hizikia fusiforme and Chlorella sp. extracts on lead acetate-induced hepatotoxicity were investigated. Hepatic damage was induced in rats by intraperitoneal (i.p.) injection of lead acetate and the protective effects of H. fusiforme (HZK) and Chlorella sp. (CHL) extracts on lead acetate-induced hepatic damage in rat liver were examined. The results revealed significantly increased glutamic oxaloacetate and glutamic pyruvic transaminase levels in the group treated with lead acetate only (Pb group); oral administration of HZK and CHL extracts tended to decrease the enzyme levels similar to those observed in the control group. Regarding antioxidant enzymes, superoxide dismutase activity was increased in the Pb group and decreased in a concentration-dependent manner in the HZK- and CHL-treated groups. Glutathione levels were increased in a concentration-dependent manner in the HZK- and CHL-treated groups. There was no significant difference in catalase activity. Western blot analysis showed inflammation-related protein expression in mitogen-activated protein kinase and Nrf2 pathways was affected in the HZK- and CHL-treated groups. Therefore, HZK and CHL extracts exerted antioxidant and anti-inflammatory effects against lead acetate-induced hepatotoxicity. Development of functional health foods containing HZK and CHL extracts, which have hepatoprotective effects against inhaled lead acetate, should be considered.