• Title/Summary/Keyword: Hepatocyte apoptosis

Search Result 54, Processing Time 0.028 seconds

Antioxidant Effect and Liver Protection Effect of Spatholobi Caulis Water Extract (계혈등 물추출물의 항산화 및 간보호효과)

  • Lee, Jae-Jun;Choi, Hong-Sik;Kim, Seung-Mo
    • The Korea Journal of Herbology
    • /
    • v.26 no.3
    • /
    • pp.47-56
    • /
    • 2011
  • Objectives : This study investigated whether the water extract of Spatholobi Caulis (SCE) has the ability to protect hepatocyte against oxidative stress induced by tert-butylhydroperoxide (tBHP) in vitro and $CCl_4$ in vivo. Methods : In vitro, HepG2 cells pre-treated with Spatholobi Caulis water extract (1, 3, 10, $30{\mu}g$/ml) for 12h and further incubated with tBHP ($100{\mu}M$) for the next 12h. Cell viability was assessed by MTT assay. In vivo, rats were orally administrated with the aqueous extract of Spatholobi Caulis (SCE; 50, 100 mg/kg) for 4 days and then, injected with $CCl_4$ 1 mg/kg body weight to induce acute liver damage. Results : Treatment with SCE inhibited cell death induced by tBHP, as evidenced by alterations in the levels of the proteins associated with apoptosis:SCE prevented a decrease in $Bcl_2$, and cleavage of poly(ADP-ribose)polymerase and pro-caspase-3. Moreover, SCE inhibited the ability of tBHP to generate $H_2O_2$ production, thereby restoring GSH content. Moreover, SCE treatments in rats effectively decreased liver injuries induced by a single dose of $CCl_4$, as evidenced by decreases in hepatic degeneration and inflammation as well as plasma alanine aminotransferase and lactate dehydrogenase activities. Consistently, treatments of SCE also protected liver in rats stimulated by $CCl_4$, as indicated by restoration GSH and prevention of MDA in the liver. Conclusions : SCE has the ability 1) to protect hepatocyte against oxidative stress induced by tBHP and 2) to prevent $CCl_4$-inducible acute liver toxicity. Present findings may be informative not only in elucidating the pharmacological mechanism of Spatholobi Caulis, but in determining its potential application for oxidative cellular damage in the liver.

SKT + EKE (2:1) protects oxidative stress induced-liver damage (산화적 스트레스에 대한 생간건비탕가음양곽(生肝健脾湯加淫羊藿) (2:1)의 간보호효과)

  • Sang Mi Park;Dae Hwa Jung;Hyo Jeong Jin;Ye Lim Kim;Kyung-soon Kim;Min Hwangbo;Sang Chan Kim
    • Herbal Formula Science
    • /
    • v.32 no.1
    • /
    • pp.63-82
    • /
    • 2024
  • Objective : Saengkankunbi-tang (SKT) is used as a traditional Korean herbal formula for treatment of liver diseases. We investigated the hepatoprotective effects of SKT plus Epimedium koreanum Nakai (EKE) against arachidonic acid (AA) + iron-mediated cytotoxicity in HepG2 cells and carbon tetrachloride (CCl4)-mediated acute liver damage in mice. Methods : The cyto-protective effects of SKT + EKE were determined by MTT assay, western blot and fluorescence activated cell sorting analysis. In mice, blood biochemistry and western blot were assessed in CCl4-induced acute hepatic damage. The animal groups included vehicle-treated control, CCl4, SKT (200 mg/kg/day), EKE (100 mg/kg/day), SKT (200 mg/kg/day) + EKE (100 mg/kg/day) and silymarin (200 mg/kg/day). Results : In HepG2 cells, pretreatment with SKT + EKE significantly suppressed cytotoxicity induced by AA + iron and reduced the expression of proteins related to apoptosis. In addition, pretreatment with SKT + EKE significantly prevented the increase in H2O2 production, GSH depletion, and lower mitochondrial membrane potential induced by AA + iron. In CCl4-induced liver damage mice, the administration of SKT + EKE prevented the liver damage by inhibition of hepatocyte damage and expression of apoptosis proteins in liver. More importantly, in vitro and in vivo assay, SKT + EKE showed significant effect compare with SKT alone or EKE alone in all parameters. Conclusions : These results indicated that SKT + EKE could protect against oxidative stress-induced liver damage, and SKT + EKE is more effective than SKT alone or EKE alone.

The Involvement of p38 MAPK and JNK Activation in Palmitic Acid-Induced Apoptosis in Rat Hepatocytes (Palmitic acid에 의한 간세포 사멸효과에 대한 p38 MAPK 및 JNK 관련성)

  • Bae, Chun-Sik;Park, Soo-Hyun
    • Journal of Life Science
    • /
    • v.19 no.8
    • /
    • pp.1119-1124
    • /
    • 2009
  • Hyperlipidemia has been reported to be associated with the development of fatty liver. Palmitic acid, a major saturated fatty acid, is involved in the development of diverse diseases. The activation of mitogen activated protein kinases (MAPKs), such as Jun N-terminal kinase (INKs) and p38 MAPK is implicated in the apoptosis in diverse cells. Thus, this study was conducted to investigate the effects of palmitic acid on apoptosis and its relationship between JNK and p38 MAPK in cultured rat hepatocytes. In the present study, palmitic acid (>50 uM) decreased cell proliferation and increased lactate dehydrogenase activity in hepatocytes, which was blocked by the treatment of SP600125 (a JNK inhibitor) and SB203580 (a p38 MAPK inhibitor). Indeed, palmitic acid decreased Bcl-2 expression but increased Bax expression in rat hepatocytes, which was blocked by the treatment of SP600125 and SB203580. In addition, palmitic acid decreased glutathione (GSH) content and increased lipid peroxide formation, which was blocked by the treatment of SP600125 and SB203580. Western immunoblotting analysis also revealed that palmitic acid increased JNK and p38 MAPK. In conclusion, palmitic acid induced apoptosis through oxidative stress via JNK and p38 MAPK activation in rat hepatocytes.

Hepato-Protective Activities of Jasminum officinale L. var. grandiflorum Aqueous Extract via Activation of AMPK in HepG2 Cells (AMPK 활성화를 통한 소형화(素馨花) (Jasminum officinale L. var. grandiflorum) 열수 추출물의 HepG2 간세포 보호 활성)

  • Sang Mi Park;Dae Hwa Jung;Byung Gu Min;Kyung Hwan Jegal;Sung Hui Byun;Jae Kwang Kim;Sang Chan Kim
    • Herbal Formula Science
    • /
    • v.31 no.4
    • /
    • pp.231-243
    • /
    • 2023
  • Objectives : Jasminum officinale L. var. grandiflorum is used as a traditional or folk remedy in China to treat arthritis, hepatitis, duodenitis, conjunctivitis, gastritis, and diarrhea. In this study, we aimed to study the hepatocyte protective activity and molecular mechanism of Jasminum officinale L. var. grandiflorum aqueous extract (JGW) using HepG2 hepatocyte cell lines. Methods : HepG2 cells were pretreated with diverse concentrations of JGW, and then the cells were exposed to tert-butyl hydroperoxide (tBHP) for inducing oxidative stress. Hydrogen peroxide (H2O2) production, glutathione (GSH) concentration, mitochondrial membrane potential (MMP) and cell viability were measured to investigate hepato-protective effects of JGW. Phosphorylation of AMP-activated protein kinases (AMPK), acetyl coenzyme A carboxylase (ACC) and effects of compound C on cell viability were examined to observe the role of AMPK on JGW-mediated cytoprotection. Results : Pretreatment with JGW (10-300 ㎍/mL) significantly suppressed cytotoxicity induced by tBHP in a concentration dependent manner and reduced the expression of cleaved PARP and cleaved caspase-3 proteins related to apoptosis in HepG2 cells. In addition, pretreatment with JGW significantly prevented the increase in H2O2 production, GSH depletion, and lower MMP induced by tBHP. Treatment with JGW (30 minutes of incubation and concentrations of 100 and 300 ㎍/mL) increased the phosphorylation of AMPK and ACC and treatment with compound C, a chemical inhibitor of AMPK, inhibited the cytoprotective effect of JGW. Conclusions : Our results demonstrated that JGW may protect hepatocytes from oxidative stress via activation of AMPK.

Valproic Acid-induced PPAR-alpha and FGF21 Expression Involves Survival Response in Hepatocytes (Valproic acid에 의해 증가하는 PPAR-alpha 및 FGF21의 발현이 간세포 생존에 미치는 영향)

  • Bakhovuddin Azamov;Yeowon Kang;Chanhee Lee;Wan-Seog Shim;Kwang Min Lee;Parkyong Song
    • Journal of Life Science
    • /
    • v.34 no.4
    • /
    • pp.227-235
    • /
    • 2024
  • Hepatocyte damage caused by medications or herbal products is one of the important problem when these compounds are chronically administrated. Thus, improving hepatocyte survival during treatment offers a wide range of opportunities. Valproic acid (VPA), a branched short-chain fatty acid derived from naturally occurring valeric acid, is commonly used to treat epilepsy and seizures. Although VPA exerts numerous effects in cancer, HIV therapy, and neurodegenerative disease, its effects on the liver and its mechanism of action have not been fully elucidated. Here, we demonstrated that VPA caused moderate liver cell toxicity and apoptosis. Interestingly, VPA treatment increased transcription levels of PPAR alpha (PPAR-α) and fibroblast growth factor 21 (FGF21) in murine (Hepa1c1c7) hepatoma cells in a time and concentration dependent manner. VPA-induced FGF21 expression was significantly weaker under PPAR-α silencing condition than in cells transfected with non-targeting control siRNA. Subsequent experiments showed that cell viability was significantly lowered when the FGF21 signaling pathway was blocked by FGF receptor antagonist. Finally, we further determined that AMPK phosphorylation was not responsible for VPA-induced FGF21 expression and PPAR-a increments. These results indicate that increases of FGF21 expression alleviate VPA-induced hepatic toxicity, thereby making FGF21 a potential biomarker for predicting liver damage during VPA treatments.

Long-Duration Three-Dimensional Spheroid Culture Promotes Angiogenic Activities of Adipose-Derived Mesenchymal Stem Cells

  • Lee, Jun Hee;Han, Yong-Seok;Lee, Sang Hun
    • Biomolecules & Therapeutics
    • /
    • v.24 no.3
    • /
    • pp.260-267
    • /
    • 2016
  • Mesenchymal stem cells (MSCs) offer significant therapeutic promise for various regenerative therapies. However, MSC-based therapy for injury exhibits low efficacy due to the pathological environment in target tissues and the differences between in vitro and in vivo conditions. To address this issue, we developed adipose-derived MSC spheroids as a novel delivery method to preserve the stem cell microenvironment. MSC spheroids were generated by suspension culture for 3 days, and their sizes increased in a time-dependent manner. After re-attachment of MSC spheroids to the plastic dish, their adhesion capacity and morphology were not altered. MSC spheroids showed enhanced production of hypoxia-induced angiogenic cytokines such as vascular endothelial growth factor (VEGF), stromal cell derived factor (SDF), and hepatocyte growth factor (HGF). In addition, spheroid culture promoted the preservation of extracellular matrix (ECM) components, such as laminin and fibronectin, in a culture time- and spheroid size-dependent manner. Furthermore, phosphorylation of AKT, a cell survival signal, was significantly higher and the expression of pro-apoptotic molecules, poly (ADP ribose) polymerase-1 (PARP-1) and cleaved caspase-3, was markedly lower in the spheroids than in MSCs in monolayers. In the murine hindlimb ischemia model, transplanted MSC spheroids showed better proliferation than MSCs in monolayer. These findings suggest that MSC spheroids promote MSC bioactivities via secretion of angiogenic cytokines, preservation of ECM components, and regulation of apoptotic signals. Therefore, MSC spheroid-based cell therapy may serve as a simple and effective strategy for regenerative medicine.

IP-10 Expression in Patients with Chronic HBV Infection and Its Ability to Predict the Decrease in HBsAg Levels after Treatment with Entecavir

  • Zhao, Kai;Yang, Tao;Sun, Mimi;Zhang, Wei;An, Yong;Chen, Gang;Jin, Lei;Shang, Qinghua;Song, Wengang
    • Molecules and Cells
    • /
    • v.40 no.6
    • /
    • pp.418-425
    • /
    • 2017
  • Interferon-${\gamma}$-inducible protein 10 (IP-10), also known as chemokine C-X-C motif ligand (CXCL) 10, is closely associated with antiviral immunity and the progression of chronic hepatitis B (CHB). However, the value of baseline serological and histological IP-10 expression levels in predicting the efficacy of the antiviral response to nucleoside/nucleotide analogues (NAs) is still unknown. In our research, intrahepatic and peripheral IP-10 expression levels were systemically examined before and after treatment with entecavir (ETV). Baseline serological and histological IP-10 expression levels were significantly increased in patients with CHB, particularly in patients with higher degrees of liver inflammation and liver fibrosis. Moreover, higher baseline intrahepatic IP-10 levels indicated better prognoses in patients with CHB after entecavir therapy. The baseline IP-10 level was also positively associated with several clinical parameters, including baseline levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), hepatitis B virus (HBV) DNA, and hepatitis B surface antigen (HBsAg), and with the decrease in HBsAg levels after treatment. In addition, monocyte-derived IP-10 was expressed at higher levels in patients with CHB than in patients with liver cirrhosis (LC) and healthy controls (HC). According to the results of our in vitro experiments, IP-10 directly promoted hepatocyte apoptosis. Based on these findings, baseline serological and histological IP-10 levels might predict CHB severity and the decrease in HBsAg levels after entecavir therapy.

Cripto Enhances Proliferation and Survival of Mesenchymal Stem Cells by Up-Regulating JAK2/STAT3 Pathway in a GRP78-Dependent Manner

  • Yun, SeungPil;Yun, Chul Won;Lee, Jun Hee;Kim, SangMin;Lee, Sang Hun
    • Biomolecules & Therapeutics
    • /
    • v.26 no.5
    • /
    • pp.464-473
    • /
    • 2018
  • Cripto is a small glycosylphosphatidylinositol-anchored signaling protein that can detach from the anchored membrane and stimulate proliferation, migration, differentiation, vascularization, and angiogenesis. In the present study, we demonstrated that Cripto positively affected proliferation and survival of mesenchymal stem cells (MSCs) without affecting multipotency. Cripto also increased expression of phosphorylated janus kinase 2 (p-JAK2), phosphorylated signal transducer and activator of transcription 3 (p-STAT3), 78 kDa glucose-regulated protein (GRP78), c-Myc, and cyclin D1. Notably, treatment with an anti-GRP78 antibody blocked these effects. In addition, pretreatment with STAT3 short interfering RNA (siRNA) inhibited the increase in p-JAK2, c-Myc, cyclin D1, and BCL3 levels caused by Cripto and attenuated the pro-survival action of Cripto on MSCs. We also found that incubation with Cripto protected MSCs from apoptosis caused by hypoxia or $H_2O_2$ exposure, and the level of caspase-3 decreased by the Cripto-induced expression of B-cell lymphoma 3-encoded protein (BCL3). These effects were sensitive to down-regulation of BCL3 expression by BCL3 siRNA. Finally, we showed that Cripto enhanced expression levels of vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), and hepatocyte growth factor (HGF). In summary, our results demonstrated that Cripto activated a novel biochemical cascade that potentiated MSC proliferation and survival. This cascade relied on phosphorylation of JAK2 and STAT3 and was regulated by GRP78. Our findings may facilitate clinical applications of MSCs, as these cells may benefit from positive effects of Cripto on their survival and biological properties.

Effects of Pahs and Pcbs and Their Toxic Metabolites on Inhibition of Gjic and Cell Proliferation in Rat Liver Epithelial Wb-F344 Cells

  • Miroslav, Machala;Jan, Vondracek;Katerina, Chramostova;Lenka, Sindlerova;Pavel, Krcmar;Martina, Pliskova;Katerina, Pencikova;Brad, Upham
    • Environmental Mutagens and Carcinogens
    • /
    • v.23 no.2
    • /
    • pp.56-62
    • /
    • 2003
  • The liver progenitor cells could form a potential target cell population fore both tumor-initiating and -promoting chemicals. Induction of drug-metabolizing and antioxidant enzymes, including AhR-dependent CYP1A1, NQO-1 and AKR1C9, was detected in the rat liver epithelial WB-F344 "stem-like" cells. Additionally, WB-F344 cells express a functional, wild-type form of p53 protein, a biomarker of genotoxic events, and connexin 43, a basic structural unit of gap junctions forming an important type of intercellular communication. In this cellular model, two complementary assays have been established for detection of the modes of action associated with tumor promotion: inhibition of gap junctional intercellular communication (GJIC) and proliferative activity in confluent cells. We found that the PAHs and PCBs, which are AhR agonists, released WB-F344 cells from contact inhibition, increasing both DNA synthesis and cell numbers. Genotoxic effects of some PAHs that lead to apoptosis and cell cycle delay might interfere with the proliferative activity of PAHs. Contrary to that, the nongenotoxic low-molecular-weight PAHs and non-dioxin-like PCB congeners, abundant in the environment, did not significantly affect cell cycle and cell proliferation; however both groups of compounds inhibited GJIC in WB-F344 cells. The release from contact inhibiton by a mechanism that possibly involves the AhR activation, inhibition of GJIC and genotoxic events induced by environmental contaminants are three important modes of action that could play an important role in carcinogenic effects of toxic compounds. The relative potencies to inhibit GJIC, to induce AhR-mediated activity, and to release cells from contact inhibition were determined for a large series of PAHs and PCBs and their metabolites. In vitro bioassays based on detection of events on cellular level (deregulation of GJIC and/or proliferation) or determination of receptor-mediated activities in both ?$stem-like^{\circ}{\times}$ and hepatocyte-like liver cellular models are valuable tools for detection of modes of action of polyaromatic hydrocarbons. They may serve, together with concentration data, as a first step in their risk assessment.

  • PDF

Endoplasmic Reticulum Stress Activates Hepatic Macrophages through PERK-hnRNPA1 Signaling

  • Ari Kwon;Yun Seok Kim;Jiyoon Kim;Ja Hyun Koo
    • Biomolecules & Therapeutics
    • /
    • v.32 no.3
    • /
    • pp.341-348
    • /
    • 2024
  • Endoplasmic reticulum (ER) stress plays a crucial role in liver diseases, affecting various types of hepatic cells. While studies have focused on the link between ER stress and hepatocytes as well as hepatic stellate cells (HSCs), the precise involvement of hepatic macrophages in ER stress-induced liver injury remains poorly understood. Here, we examined the effects of ER stress on hepatic macrophages and their role in liver injury. Acute ER stress led to the accumulation and activation of hepatic macrophages, which preceded hepatocyte apoptosis. Notably, macrophage depletion mitigated liver injury induced by ER stress, underscoring their detrimental role. Mechanistic studies revealed that ER stress stimulates macrophages predominantly via the PERK signaling pathway, regardless of its canonical substrate ATF4. hnRNPA1 has been identified as a crucial mediator of PERK-driven macrophage activation, as the overexpression of hnRNPA1 effectively reduced ER stress and suppressed pro-inflammatory activation. We observed that hnRNPA1 interacts with mRNAs that encode UPR-related proteins, indicating its role in the regulation of ER stress response in macrophages. These findings illuminate the cell type-specific responses to ER stress and the significance of hepatic macrophages in ER stress-induced liver injury. Collectively, the PERK-hnRNPA1 axis has been discovered as a molecular mechanism for macrophage activation, presenting prospective therapeutic targets for inflammatory hepatic diseases such as acute liver injury.