• Title/Summary/Keyword: Hepatocellular carcinoma cells

Search Result 311, Processing Time 0.027 seconds

Biological Activities of Soybean Sauce (Kanjang) Supplemented with Deep Sea Water and Sea Tangle (해양심층수 및 다시마 분말을 첨가하여 제조한 간장의 생리활성 효과)

  • Ham, Seung-Shi;Kim, Soo-Hyun;Yoo, Su-Jong;Oh, Hyun-Taek;Choi, Hyun-Jin;Chung, Mi-Ja
    • Food Science and Preservation
    • /
    • v.15 no.2
    • /
    • pp.274-279
    • /
    • 2008
  • This study investigated the antimutagenic and anticancer effects of soybean sauce (kanjang) supplemented with deep sea water and Sea Tangle. The Ames test indicated that kanjang had no mutagenicity but it significantly inhibited mutations induced by N-methyl-N'-nitro-N-nitrosoguanidine(MNNG) and 4-nitroquinoline-1-oxide (4NQO). Kanjang (200 ug/plate) with supplementary deep sea water and Sea Tangle had approximately 90.9% and 62.0% inhibitory effect, respectively, against mutagenesis of TA100 induced by MNNG and 4NQO. There was 61.7% inhibition of mutagenesis induced by 4NQO against the TA98 strain. Kanjang inhibited growth of cell lines of human cervical adenocarcinoma (HeLa), human hepatocellular carcinoma (Hep3B), human gastric carcinoma (AGS), human lung carcinoma (A549), and human breast adenocarcinoma (MCF-7) in a concentration-dependent manner. Treatment with kanjang supplemented with 1.0 mg/mL deep sea water had cytotoxicities of 69.4% 70.5% 55.6% 82.1 % and 73.2% against HeLa, Hep3B, AGS, A549 and MCF-7 cells respectively. In contrast kanjang supplemented with 1 mg/mL deep sea water had only $10{\sim}40%$ cytotoxicity on normal human embryonal kidney cells (293). Kanjang supplemented with deep sea water significantly inhibited tumor growth in mice injected sarcoma-180 cells. In particular, kanjang supplemented with deep sea water (25 mg/kg) inhibited tumor cell activity by 40.9%.

Multiple Molecular Targets of Sensitizers in Tumor Necrosis Factor (TNF)-Related Apoptosis-Inducing Ligand (TRAIL/Apo2L)-Mediated Apoptosis (TRAIL 매개의 세포사멸 유도를 위한 다양한 분자적 타깃)

  • Min, Kyoung-Jin;Kwon, Taeg-Kyu
    • Journal of Life Science
    • /
    • v.21 no.11
    • /
    • pp.1641-1651
    • /
    • 2011
  • Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL/Apo2L) is a recently identified member of the TNF ligand family that can initiate apoptosis through the activation of their death receptors. TRAIL has been paid attention as a potential anti-cancer drug, because it selectively induces apoptosis in tumor cells in vitro and in vivo but not in most normal cells. However, recent studies have shown that some cancer cells including malignant renal cell carcinoma and hepatocellular carcinoma, are resistant to the apoptotic effects of TRAIL. Therefore, single treatment with TRAIL may not be sufficient for the treatment of various malignant tumor cells. Understanding the molecular mechanisms of TRAIL resistance and identification of sensitizers capable of overcoming TRAIL resistance in cancer cells is needed for the establishment of more effective TRAIL-based cancer therapies. Chemotherapeutic drugs induce apoptosis and the upregulation of death receptors or activation of intracellular signaling pathways of TRAIL. Numerous chemotherapeutic drugs have been shown to sensitize tumor cells to TRAIL-mediated apoptosis. In this study, we summarize biological agents and drugs that sensitize tumors to TRAIL-mediated apoptosis and discuss the potential molecular basis for their sensitization.

Characterization of a Cell Line HFH-T2, Producing Viral Particles, from Primary Human Fetal Hepatocytes Infected with Hepatitis B Virus

  • Shim, Jae-Kyoung;Kim, Dong-Wook;Chung, Tae-Ho;Kim, June-Ki;Suh, Jeong-Ill;Park, Chun;Lee, Young-Choon;Chung, Tae-Wha;Song, Eun-Young;Kim, Cheorl-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.2
    • /
    • pp.186-192
    • /
    • 2001
  • A primary culture of human fetal hepatocytes was obtained through a therapeutic abortion process at 26 weeks of gestation period. More than $10^8$ cells were seeded on a plastic plate. These hepatocytes were infected with hepatitis B virus (HBV). The HBV was purified from serum of one chronic HBV carrier. Transformed hepatocytes were subcultured in a 10% FBS-supplemented medium. The morphology of the transformed cell was epithelial-like. The cells from the first pass showed signs of early proliferation and had a latent period of more than 3 months after 6-7 passages. After the rest period, the transformed cell proliferated actively and they were subcultured every three days. Transformed hepatocytes were characterized by detection of the HBV transcript by RT-PCR. The secretion of virions from transformed cells was investigated by PCR with the cell medium. Two types of virions secreted into the culture medium were examined by using the transmission electron microscope. Another approach to study the secretion of virions in to culture medium was carried out with HBV antibody. HBsAg was detected in the culture medium of transformed cells using ELISA and Western blot analyses. These data suggested that the human fetal hepatocyte cell line has been established by infection of HBV, in which this cell line secreted viral particles into the culture medium.

  • PDF

In-Jin-Ho-Tang as a potential anti-cancer drug by induction of apoptosis in HepG2 cells

  • Yun, Hyun-Jeong;Heo, Sook-Kyoung;Park, Won-Hwan;Park, Sun-Dong
    • Advances in Traditional Medicine
    • /
    • v.9 no.2
    • /
    • pp.106-114
    • /
    • 2009
  • Hepatocellular carcinoma is the world's most common primary malignant tumor of the liver. In-Jin-ho-Tang (IJHT) has been used as a traditional Chinese herbal medicine since ancient times, and today it is widely used as a medication for jaundice associated with inflammation of the liver. In-Jin-Ho-Tang is a drug preparation consisting of three herbs: Artemisiae Capillaris Herba (Artemisia capillaries $T_{HUNS}$, Injinho in Korean), Gardeniae Fructus (Gardenia jasminodes $E_{LLIS}$, Chija in Korean) and Rhei radix et rhizoma (Rheum palmatum L., Daehwang in Korean). This study investigated whether or not methanol extract of IJHT could induce HepG2 cancer cell death. Cytotoxic activity of IJHT on HepG2 cells was measured using an XTT assay, with an $IC_{50}$ value of $700{\mu}g/ml$ at 24 h Apoptosis induction by IJHT in HepG2 cells was verified by the cleavage of poly ADP-ribose polymerase, and a decrease in procaspase-3, -8, -9. Treatment of IJHT resulted in the release of cytochrome c into cytosol, loss of mitochondrial membrane potential (${\Delta}{\Psi}_m$), decrease in anti-apoptotic Bcl-2, and an increase in pro-apoptotic Bax expression. Thus, IJHT induced apoptosis in HepG2 cells via activation of caspase and mitochondria pathway. These results indicate that IJHT has potential as an anti-cancer agent.

Antioxidant and Anticarcinogenic Effects of Domestic Yellow Cherry Tomato (국내산 황색 방울토마토의 항산화활성 및 암세포 생육억제 효과)

  • Choi, Suk-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.11
    • /
    • pp.518-527
    • /
    • 2021
  • This study verifies the polyphenol and flavonoid contents of a dried extract, as well as its antioxidant effect and growth inhibitory effect on cancer cells to investigate the potential of yellow cherry tomatoes as a physiologically active food material. The polyphenol and flavonoid contents were determined as 10.96 ± 1.57 and 4.12 ± 0.41 mg/g, respectively. The antioxidant activity was confirmed by measuring DPPH and ABTS radical scavenging ability, and RC50-the concentration that reduces free radicals by 50%-were determined as 490.83 ± 17.35 ㎍/mL and 355.90 ± 0.79 ㎍/mL, respectively. The dried extract showed no cytotoxicity with respect to normal hepatocytes (Chang) and no growth inhibitory activity with respect to A549 lung cancer cells, whereas dried extract showed growth inhibitory activities of 15.2% and 18.4% with respect to human cervical adenocarcinoma (HeLa) and human hepatocellular carcinoma (HepG2) cells, respectively, when treated with a concentration at 100㎍/mL. The results of this study confirm the potential of yellow cherry tomatoes as a physiologically active food material by verifying their antioxidant activity and their growth inhibitory activity with respect to cervical and liver cancer cells.

Extracellular Concentration of ⳑ-Cystine Determines the Sensitivity to System xc- Inhibitors

  • Abdullah, Md;Lee, Seung Jin
    • Biomolecules & Therapeutics
    • /
    • v.30 no.2
    • /
    • pp.184-190
    • /
    • 2022
  • Targeting the cystine/glutamate exchange transporter, system xc-, is a promising anticancer strategy that induces ferroptosis, which is a distinct form of cell death mediated by iron-dependent lipid peroxidation. The concentration of ⳑ-cystine in culture medium is higher than the physiological level. This study was aimed to evaluate the effects of ⳑ-cystine concentration on the efficacy of ferroptosis inducers in hepatocellular carcinoma cells. This study showed that treatment with sulfasalazine or erastin, a system xc- inhibitor, decreased the viability of Huh6 and Huh7 cells in a dose-dependent manner, and the degree of growth inhibition was greater in medium containing a physiological ⳑ-cystine concentration of 83 µM than in commercial medium with a concentration of 200 µM ⳑ-cystine. However, RSL3, a glutathione peroxidase 4 inhibitor, decreased cell viability to a similar extent in media containing both ⳑ-cystine concentrations. Sulfasalazine and erastin significantly increased the percentages of propidium iodide-positive cells in media with 83 µM ⳑ-cystine, but not in media with 200 µM ⳑ-cystine. Sulfasalazine- or erastin-induced accumulation of lipid peroxidation as monitored by C11-BODIPY probe was higher in media with 83 µM ⳑ-cystine than in media with 200 µM ⳑ-cystine. In contrast, the changes in the percentages of propidium iodide-positive cells and lipid peroxidation by RSL3 were similar in both media. These results showed that sulfasalazine and erastin, but not RSL3, were efficacious under conditions of physiological ⳑ-cystine concentration, suggesting that medium conditions would be crucial for the design of a bioassay for system xc- inhibitors.

Hepatitis C Virus Nonstructural 5A Protein Interacts with Telomere Length Regulation Protein: Implications for Telomere Shortening in Patients Infected with HCV

  • Lim, Yun-Sook;Nguyen, Men T.N.;Pham, Thuy X.;Huynh, Trang T.X.;Park, Eun-Mee;Choi, Dong Hwa;Kang, Sang Min;Tark, Dongseob;Hwang, Soon B.
    • Molecules and Cells
    • /
    • v.45 no.3
    • /
    • pp.148-157
    • /
    • 2022
  • Hepatitis C virus (HCV) is a major cause of chronic liver disease and is highly dependent on cellular proteins for viral propagation. Using protein microarray analysis, we identified 90 cellular proteins as HCV nonstructural 5A (NS5A) interacting partners, and selected telomere length regulation protein (TEN1) for further study. TEN1 forms a heterotrimeric complex with CTC and STN1, which is essential for telomere protection and maintenance. Telomere length decreases in patients with active HCV, chronic liver disease, and hepatocellular carcinoma. However, the molecular mechanism of telomere length shortening in HCV-associated disease is largely unknown. In the present study, protein interactions between NS5A and TEN1 were confirmed by immunoprecipitation assays. Silencing of TEN1 reduced both viral RNA and protein expression levels of HCV, while ectopic expression of the siRNA-resistant TEN1 recovered the viral protein level, suggesting that TEN1 was specifically required for HCV propagation. Importantly, we found that TEN1 is re-localized from the nucleus to the cytoplasm in HCV-infected cells. These data suggest that HCV exploits TEN1 to promote viral propagation and that telomere protection is compromised in HCV-infected cells. Overall, our findings provide mechanistic insight into the telomere shortening in HCV-infected cells.

Hepatitis B virus X Protein Promotes Liver Cancer Progression through Autophagy Induction in Response to TLR4 Stimulation

  • Juhee Son;Mi-Jeong Kim;Ji Su Lee;Ji Young Kim;Eunyoung Chun;Ki-Young Lee
    • IMMUNE NETWORK
    • /
    • v.21 no.5
    • /
    • pp.37.1-37.17
    • /
    • 2021
  • Hepatitis B virus X (HBx) protein has been reported as a key protein regulating the pathogenesis of HBV-induced hepatocellular carcinoma (HCC). Recent evidence has shown that HBx is implicated in the activation of autophagy in hepatic cells. Nevertheless, the precise molecular and cellular mechanism by which HBx induces autophagy is still controversial. Herein, we investigated the molecular and cellular mechanism by which HBx is involved in the TRAF6-BECN1-Bcl-2 signaling for the regulation of autophagy in response to TLR4 stimulation, therefore influencing the HCC progression. HBx interacts with BECN1 (Beclin 1) and inhibits the association of the BECN1-Bcl-2 complex, which is known to prevent the assembly of the pre-autophagosomal structure. Furthermore, HBx enhances the interaction between VPS34 and TRAF6-BECN1 complex, increases the ubiquitination of BECN1, and subsequently enhances autophagy induction in response to LPS stimulation. To verify the functional role of HBx in liver cancer progression, we utilized different HCC cell lines, HepG2, SK-Hep-1, and SNU-761. HBx-expressing HepG2 cells exhibited enhanced cell migration, invasion, and cell mobility in response to LPS stimulation compared to those of control HepG2 cells. These results were consistently observed in HBx-expressed SK-Hep-1 and HBx-expressed SNU-761 cells. Taken together, our findings suggest that HBx positively regulates the induction of autophagy through the inhibition of the BECN1-Bcl-2 complex and enhancement of the TRAF6-BECN1-VPS34 complex, leading to enhance liver cancer migration and invasion.

Apoptotic Cell Death by Pectenotoxin-2 in p53-Deficient Human Hepatocellular Carcinoma Cells (종양억제유전자 p53 결손 인체간암세포에서 Pectenotoxin-2에 의한 Apoptosis 유도)

  • Shin, Dong-Yeok;Kim, Gi-Young;Choi, Byung-Tae;Kang, Ho-Sung;Jung, Jee-H.;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.17 no.10
    • /
    • pp.1447-1451
    • /
    • 2007
  • Through the screening of marine natural compounds that inhibit cancer cell proliferation, we previously reported that pectenotoxin-2 (PTX-2) isolated from marine sponges exhibits selective cytotoxicity against several cell lines in p53-deficient tumor cells compared to those with functional p53. However, the molecular mechanisms of its anti-proliferative action on malignant cell growth are not completely known. To further explore the mechanisms of its anti-cancer activity and to test whether the status of p53 in liver cancer cells correlates with their chemo-sensitivities to PTX-2, we used two well-known hepatocarcinoma cell lines, p53-deficient Hep3B and p53-wild type HepG2. We have demonstrated that PTX-2 markedly inhibits Hep3B cell growth and induces apoptosis whereas HepG2 cells are much more resistant to PTX-2 suggesting that PTX-2 seems to act by p53-independent cytotoxic mechanism. The apoptosis induced by PTX-2 in Hep3B cells was associated with the modulation of DNA fragmentation factor (DFF) family proteins, up-regulation of pro-apoptotic Bcl-2 family members such as Bax and Bcl-xS and activation of caspases (caspase-3, -8 and -9). Blockade of the caspase-3 activity by caspase-3 inhibitor, z-DEVD-fmk, prevented the PTX-2-induced growth inhibition in Hep3B cells. Moreover, treatment with PTX-2 also induced phosphorylation of AKT and extracellular-signal regulating kinase (ERK), but not c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MARK). Specific inhibitors of PI3K inhibitor (LY294002) and ERK1/2 inhibitor (PD98059) significantly blocks PTX-2-induced-anti-proliferative effects, whereas a JNK inhibitor (SP600125) and a p38 MAPK inhibitor (SB203580) have no significant effects demonstrating that the pro-apoptotic effect of PTX-2 mediated through activation of AKT and ERK signal pathway in Hep3B cells.

Gene Regulations in HBV-Related Liver Cirrhosis Closely Correlate with Disease Severity

  • Lee, Se-Ram;Kim, So-Youn
    • BMB Reports
    • /
    • v.40 no.5
    • /
    • pp.814-824
    • /
    • 2007
  • Liver cirrhosis (LC) is defined as comprising diffuse fibrosis and regenerating nodules of the liver. The biochemical and anatomical dysfunction in LC results from both reduced liver cell number and portal vascular derangement. Although several studies have investigated dysregulated genes in cirrhotic nodules, little is known about the genes implicated in the pathophysiologic change of LC or about their relationship with the degree of decompensation. Here, we applied cDNA microarray analysis using 38 HBsAg-positive LC specimens to identify the genes dysregulated in HBV-associated LC and to evaluate their relation to disease severity. Among 1063 known cancer- and apoptosis-related genes, we identified 104 genes that were significantly up- (44) or down- (60) regulated in LC. Interestingly, this subset of 104 genes was characteristically correlated with the degree of decompensation, called the Pugh-Child classification (20 Pugh-Child A, 10 Pugh-Child B, and 8 Pugh-Child C). Patient samples from Pugh-Child C exhibited a distinct pattern of gene expression relative to those of Pugh-Child A and B. Especially in Pugh-Child C, genes encoding hepatic proteins and metabolizing enzymes were significantly down-regulated, while genes encoding various molecules related to cell replication were up-regulated. Our results suggest that subsets of genes in liver cells correspond to the pathophysiologic change of LC according to disease severity and possibly to hepatocarcinogenesis.