Browse > Article
http://dx.doi.org/10.5352/JLS.2011.21.11.1641

Multiple Molecular Targets of Sensitizers in Tumor Necrosis Factor (TNF)-Related Apoptosis-Inducing Ligand (TRAIL/Apo2L)-Mediated Apoptosis  

Min, Kyoung-Jin (Department of Immunology, School of Medicine, Keimyung University)
Kwon, Taeg-Kyu (Department of Immunology, School of Medicine, Keimyung University)
Publication Information
Journal of Life Science / v.21, no.11, 2011 , pp. 1641-1651 More about this Journal
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL/Apo2L) is a recently identified member of the TNF ligand family that can initiate apoptosis through the activation of their death receptors. TRAIL has been paid attention as a potential anti-cancer drug, because it selectively induces apoptosis in tumor cells in vitro and in vivo but not in most normal cells. However, recent studies have shown that some cancer cells including malignant renal cell carcinoma and hepatocellular carcinoma, are resistant to the apoptotic effects of TRAIL. Therefore, single treatment with TRAIL may not be sufficient for the treatment of various malignant tumor cells. Understanding the molecular mechanisms of TRAIL resistance and identification of sensitizers capable of overcoming TRAIL resistance in cancer cells is needed for the establishment of more effective TRAIL-based cancer therapies. Chemotherapeutic drugs induce apoptosis and the upregulation of death receptors or activation of intracellular signaling pathways of TRAIL. Numerous chemotherapeutic drugs have been shown to sensitize tumor cells to TRAIL-mediated apoptosis. In this study, we summarize biological agents and drugs that sensitize tumors to TRAIL-mediated apoptosis and discuss the potential molecular basis for their sensitization.
Keywords
TRAIL; death receptor; sensitization; cancer therapy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wang, Q., Y. Ji, X. Wang, and B. M. Evers. 2000. Isolation and molecular characterization of the 5'-upstream region of the human TRAIL gene. Biochem. Biophys. Res. Commun. 276, 466-471.   DOI   ScienceOn
2 Perianayagam, M. C., N. E. Madias, B. J. Pereira, and B. L. Jaber. 2006. CREB transcription factor modulates Bcl2 transcription in response to C5a in HL-60-derived neutrophils. Eur. J. Clin. Invest 36, 353-361.   DOI   ScienceOn
3 Pitti, R. M., S. A. Marsters, S. Ruppert, C. J. Donahue, A. Moore, and A. Ashkenazi. 1996. Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J. Biol. Chem. 271, 12687-12690.   DOI
4 Rychahou, P. G., C. A. Murillo, and B. M. Evers. 2005. Targeted RNA interference of PI3K pathway components sensitizes colon cancer cells to TNF-related apoptosis-inducing ligand (TRAIL). Surgery 138, 391-397.   DOI   ScienceOn
5 Secchiero, P., A. Gonelli, E. Carnevale, D. Milani, A. Pandolfi, D. Zella, and G. Zauli. 2003. TRAIL promotes the survival and proliferation of primary human vascular endothelial cells by activating the Akt and ERK pathways. Circulation 107, 2250-2256.   DOI   ScienceOn
6 Song, J. J., J. Y. An, Y. T. Kwon, and Y. J. Lee. 2007. Evidence for two modes of development of acquired tumor necrosis factor-related apoptosis-inducing ligand resistance. Involvement of Bcl-xL. J. Biol. Chem. 282, 319-328.   DOI
7 Spierings, D. C., E. G. de Vries, E. Vellenga, F. A. van den Heuvel, J. J. Koornstra, J. Wesseling, H. Hollema, and J. S. de. 2004. Tissue distribution of the death ligand TRAIL and its receptors. J. Histochem. Cytochem. 52, 821-831.   DOI   ScienceOn
8 Takeda, K., Y. Hayakawa, M. J. Smyth, N. Kayagaki, N. Yamaguchi, S. Kakuta, Y. Iwakura, H. Yagita, and K. Okumura. 2001. Involvement of tumor necrosis factor-related apoptosis-inducing ligand in surveillance of tumor metastasis by liver natural killer cells. Nat. Med. 7, 94-100.   DOI   ScienceOn
9 Tanaka, H., K. Yoshida, H. Okamura, H. Morimoto, T. Nagata, and T. Haneji. 2007. Calyculin A induces apoptosis and stimulates phosphorylation of p65NF-kappaB in human osteoblastic osteosarcoma MG63 cells. Int. J. Oncol. 31, 389-396.
10 Tao, K. S., W. Wang, L. Wang, D. Y. Cao, Y. Q. Li, S. X. Wu, and K. F. Dou. 2008. The multifaceted mechanisms for coffee's anti-tumorigenic effect on liver. Med. Hypotheses 71, 730-736.   DOI   ScienceOn
11 Levkau, B., K. J. Garton, N. Ferri, K. Kloke, J. R. Nofer, H. A. Baba, E. W. Raines, and G. Breithardt. 2001. xIAP induces cell-cycle arrest and activates nuclear factor-kappaB : new survival pathways disabled by caspase-mediated cleavage during apoptosis of human endothelial cells. Circ. Res. 88, 282-290.   DOI   ScienceOn
12 Martelli, A. M., P. L. Tazzari, G. Tabellini, R. Bortul, A. M. Billi, L. Manzoli, A. Ruggeri, R. Conte, and L. Cocco. 2003. A new selective AKT pharmacological inhibitor reduces resistance to chemotherapeutic drugs, TRAIL, all-trans-retinoic acid, and ionizing radiation of human leukemia cells. Leukemia 17, 1794-1805.   DOI   ScienceOn
13 Mehta, K., P. Pantazis, T. McQueen, and B. B. Aggarwal. 1997. Antiproliferative effect of curcumin (diferuloylmethane) against human breast tumor cell lines. Anticancer Drugs 8, 470-481.   DOI   ScienceOn
14 Miller, D. M., D. A. Polansky, S. D. Thomas, R. Ray, V. W. Campbell, J. Sanchez, and C. A. Koller. 1987. Mithramycin selectively inhibits transcription of G-C containing DNA. Am. J. Med. Sci. 294, 388-394.   DOI   ScienceOn
15 Mohan, R., H. J. Hammers, P. Bargagna-Mohan, X. H. Zhan, C. J. Herbstritt, A. Ruiz, L. Zhang, A. D. Hanson, B. P. Conner, J. Rougas, and V. S. Pribluda. 2004. Withaferin A is a potent inhibitor of angiogenesis. Angiogenesis. 7, 115-122.   DOI   ScienceOn
16 Mucha, S. R., A. Rizzani, A. L. Gerbes, P. Camaj, W. E. Thasler, C. J. Bruns, S. T. Eichhorst, E. Gallmeier, F. T. Kolligs, B. Goke, and E. N. De Toni. 2009. JNK inhibition sensitises hepatocellular carcinoma cells but not normal hepatocytes to the TNF-related apoptosis-inducing ligand. Gut. 58, 688-698.   DOI   ScienceOn
17 Di, P. R. and G. Zauli. 2004. Emerging non-apoptotic functions of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)/Apo2L. J. Cell Physiol 201, 331-340.   DOI   ScienceOn
18 Lee, T. J., J. T. Lee, J. W. Park, and T. K. Kwon. 2006. Acquired TRAIL resistance in human breast cancer cells are caused by the sustained cFLIP(L) and XIAP protein levels and ERK activation. Biochem. Biophys. Res. Commun. 351, 1024-1030.   DOI   ScienceOn
19 Lee, T. J., H. J. Um, D. S. Min, J. W. Park, K. S. Choi, and T. K. Kwon. 2009. Withaferin A sensitizes TRAIL-induced apoptosis through reactive oxygen species-mediated up-regulation of death receptor 5 and down-regulation of c-FLIP. Free Radic. Biol. Med. 46, 1639-1649.   DOI   ScienceOn
20 Cretney, E., K. Takeda, H. Yagita, M. Glaccum, J. J. Peschon, and M. J. Smyth. 2002. Increased susceptibility to tumor initiation and metastasis in TNF-related apoptosis-inducing ligand- deficient mice. J. Immunol. 168, 1356-1361.   DOI
21 Ehrhardt, H., S. Fulda, I. Schmid, J. Hiscott, K. M. Debatin, and I. Jeremias. 2003. TRAIL induced survival and proliferation in cancer cells resistant towards TRAIL-induced apoptosis mediated by NF-kappaB. Oncogene 22, 3842-3852.   DOI   ScienceOn
22 Fulda, S. and K. M. Debatin. 2004. Modulation of TRAIL signaling for cancer therapy. Vitam. Horm. 67, 275-290.   DOI
23 Gli-Esposti, M. 1999. To die or not to die--the quest of the TRAIL receptors. J. Leukoc. Biol. 65, 535-542.
24 Grosse-Wilde, A., O. Voloshanenko, S. L. Bailey, G. M. Longton, U. Schaefer, A. I. Csernok, G. Schutz, E. F. Greiner, C. J. Kemp, and H. Walczak. 2008. TRAIL-R deficiency in mice enhances lymph node metastasis without affecting primary tumor development. J. Clin. Invest 118, 100-110.   DOI   ScienceOn
25 Wiley, S. R., K. Schooley, P. J. Smolak, W. S. Din, C. P. Huang, J. K. Nicholl, G. R. Sutherland, T. D. Smith, C. Rauch, and C. A. Smith. 1995. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 3, 673-682.   DOI   ScienceOn
26 Almasan, A. and A. Ashkenazi. 2003. Apo2L/TRAIL: apoptosis signaling, biology, and potential for cancer therapy. Cytokine Growth Factor Rev. 14, 337-348.   DOI   ScienceOn
27 Bodmer, J. L., P. Meier, J. Tschopp, and P. Schneider. 2000. Cysteine 230 is essential for the structure and activity of the cytotoxic ligand TRAIL. J. Biol. Chem. 275, 20632-20637.   DOI
28 Chen, X., K. Kandasamy, and R. K. Srivastava. 2003. Differential roles of RelA (p65) and c-Rel subunits of nuclear factor kappa B in tumor necrosis factor-related apoptosis-inducing ligand signaling. Cancer Res. 63, 1059-1066.
29 Wang, W. Q., H. Zhang, H. B. Wang, Y. G. Sun, Z. H. Peng, G. Zhou, S. M. Yang, R. Q. Wang, and D. C. Fang. 2010. Programmed cell death 4 (PDCD4) enhances the sensitivity of gastric cancer cells to TRAIL-induced apoptosis by inhibiting the PI3K/Akt signaling pathway. Mol. Diagn. Ther. 14, 155-161.   DOI   ScienceOn
30 Wang, X., W. Chen, W. Zeng, L. Bai, Y. Tesfaigzi, S. A. Belinsky, and Y. Lin. 2008. Akt-mediated eminent expression of c-FLIP and Mcl-1 confers acquired resistance to TRAIL-induced cytotoxicity to lung cancer cells. Mol. Cancer Ther. 7, 1156-1163.   DOI   ScienceOn
31 Yokota, Y., P. Bargagna-Mohan, P. P. Ravindranath, K. B. Kim, and R. Mohan. 2006. Development of withaferin A analogs as probes of angiogenesis. Bioorg. Med. Chem. Lett. 16, 2603-2607.   DOI   ScienceOn
32 Yue, H. H., G. E. Diehl, and A. Winoto. 2005. Loss of TRAIL-R does not affect thymic or intestinal tumor development in p53 and adenomatous polyposis coli mutant mice. Cell Death Differ. 12, 94-97.   DOI   ScienceOn
33 Zhang, L. and B. Fang. 2005. Mechanisms of resistance to TRAIL-induced apoptosis in cancer. Cancer Gene Ther. 12, 228-237.   DOI   ScienceOn
34 Van Geelen, C.M., E. G. de Vries, and J. S. de. 2004. Lessons from TRAIL-resistance mechanisms in colorectal cancer cells: paving the road to patient-tailored therapy. Drug Resist. Updat. 7, 345-358.   DOI   ScienceOn
35 Teitz, T., T. Wei, M. B. Valentine, E. F. Vanin, J. Grenet, V. A. Valentine, F. G. Behm, A. T. Look, J. M. Lahti, and V. J. Kidd. 2000. Caspase 8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN. Nat. Med. 6, 529-535.   DOI   ScienceOn
36 Tran, S. E., T. H. Holmstrom, M. Ahonen, V. M. Kahari, and J. E. Eriksson. 2001. MAPK/ERK overrides the apoptotic signaling from Fas, TNF, and TRAIL receptors. J. Biol. Chem. 276, 16484-16490.   DOI
37 Um, H. J., J. H. Oh, Y. N. Kim, Y. H. Choi, S. H. Kim, J. W. Park, and T. K. Kwon. 2010. The coffee diterpene kahweol sensitizes TRAIL-induced apoptosis in renal carcinoma Caki cells through down-regulation of Bcl-2 and c-FLIP. Chem. Biol. Interact. 186, 36-42.   DOI   ScienceOn
38 van Noesel, M. M., B. S. van, P. A. Voute, J. G. Herman, R. Pieters, and R. Versteeg. 2003. Clustering of hypermethylated genes in neuroblastoma. Genes Chromosomes Cancer 38, 226-233.   DOI   ScienceOn
39 Wagner, K. W., E. A. Punnoose, T. Januario, D. A. Lawrence, R. M. Pitti, K. Lancaster, D. Lee, G. M. von, S. F. Yee, K. Totpal, L. Huw, V. Katta, G. Cavet, S. G. Hymowitz, L. Amler, and A. Ashkenazi. 2007. Death-receptor O-glycosylation controls tumor-cell sensitivity to the proapoptotic ligand Apo2L/TRAIL. Nat. Med. 13, 1070-1077.   DOI   ScienceOn
40 Wang, C., T. Chen, N. Zhang, M. Yang, B. Li, X. Lu, X. Cao, and C. Ling. 2009. Melittin, a major component of bee venom, sensitizes human hepatocellular carcinoma cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis by activating CaMKII-TAK1- JNK/p38 and inhibiting IkappaBalpha kinase-NFkappaB. J. Biol. Chem. 284, 3804-3813.   DOI
41 Jung, E. M., J. W. Park, K. S. Choi, J. W. Park, H. I. Lee, K. S. Lee, and T. K. Kwon. 2006. Curcumin sensitizes tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis through CHOP-independent DR5 upregulation. Carcinogenesis 27, 2008-2017.   DOI   ScienceOn
42 Ng, C. P., A. Zisman, and B. Bonavida. 2002. Synergy is achieved by complementation with Apo2L/TRAIL and actinomycin D in Apo2L/TRAIL-mediated apoptosis of prostate cancer cells: role of XIAP in resistance. Prostate 53, 286-299.   DOI   ScienceOn
43 Pan, G., J. Ni, Y. F. Wei, G. Yu, R. Gentz, and V. M. Dixit. 1997. An antagonist decoy receptor and a death domain- containing receptor for TRAIL. Science 277, 815-818.   DOI   ScienceOn
44 Jeremias, I. and K. M. Debatin. 1998. TRAIL induces apoptosis and activation of NFkappaB. Eur. Cytokine Netw. 9, 687-688.
45 Kim, H. G., Y. P. Hwang, and H. G. Jeong. 2009. Kahweol blocks STAT3 phosphorylation and induces apoptosis in human lung adenocarcinoma A549 cells. Toxicol. Lett. 187, 28-34.   DOI   ScienceOn
46 Kim, J.Y., K. S. Jung, K. J. Lee, H. K. Na, H. K. Chun, Y. H. Kho, and H. G. Jeong. 2004. The coffee diterpene kahweol suppress the inducible nitric oxide synthase expression in macrophages. Cancer Lett. 213, 147-154.   DOI   ScienceOn
47 Kirshner, J. R., A. Y. Karpova, M. Kops, and P. M. Howley. 2005. Identification of TRAIL as an interferon regulatory factor 3 transcriptional target. J. Virol. 79, 9320-9324.   DOI   ScienceOn
48 LeBlanc, H. N. and A. Ashkenazi. 2003. Apo2L/TRAIL and its death and decoy receptors. Cell Death. Differ. 10, 66-75.   DOI   ScienceOn
49 Lee, T. J., E. M. Jung, J. T. Lee, S. Kim, J. W. Park, K. S. Choi, and T. K. Kwon. 2006. Mithramycin A sensitizes cancer cells to TRAIL-mediated apoptosis by down-regulation of XIAP gene promoter through Sp1 sites. Mol. Cancer Ther. 5, 2737-2746.   DOI   ScienceOn
50 Hofer-Warbinek, R., J. A. Schmid, C. Stehlik, B. R. Binder, J. Lipp, and M. R. de. 2000. Activation of NF-kappa B by XIAP, the X chromosome-linked inhibitor of apoptosis, in endothelial cells involves TAK1. J. Biol. Chem. 275, 22064-22068.   DOI
51 Huang, M. T., R. C. Smart, C. Q. Wong, and A. H. Conney. 1988. Inhibitory effect of curcumin, chlorogenic acid, caffeic acid, and ferulic acid on tumor promotion in mouse skin by 12-O-tetradecanoylphorbol-13-acetate. Cancer Res. 48, 5941-5946.
52 Huber, W. W., S. Prustomersky, E. Delbanco, M. Uhl, G. Scharf, R. J. Turesky, R. Thier, and R. Schulte-Hermann. 2002. Enhancement of the chemoprotective enzymes glucuronosyl transferase and glutathione transferase in specific organs of the rat by the coffee components kahweol and cafestol. Arch. Toxicol. 76, 209-217.   DOI   ScienceOn