• Title/Summary/Keyword: Hepatitis C Virus NS5A

Search Result 29, Processing Time 0.023 seconds

Solution Conformations of the Substrates and Inhibitor of Hepatitis C Virus NS3 Protease

  • 이정훈;방근수;정진원;안인애;노성구;이원태
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.3
    • /
    • pp.301-306
    • /
    • 1999
  • Hepatitis C virus (HCV) has been known to be an enveloped virus with a positive strand RNA genome and the major agent of the vast majority of transfusion associated cases of hepatitis. For viral replication, HCV structural proteins are first processed by host cell signal peptidases and NS2/NS3 site of the nonstructural protein is cleaved by a zinc-dependent protease NS2 with N-terminal NS3. The four remaining junctions are cleaved by a separate NS3 protease. The solution conformations of NS4B/5A, NS5A/5B substrates and NS5A/5B inhibitor have been determined by two-dimensional nuclear magnetic resonance (NMR) spectroscopy. NMR data suggested that the both NS5A/5B substrate and inhibitor appeared to have a folded tum-like conformation not only between P1 and P6 position but also C-terminal region, whereas the NS4B/5A substrate exhibited mostly extended conformation. In addition, we have found that the conformation of the NS5A/5B inhibitor slightly differs from that of NS5A/5B substrate peptide, suggesting different binding mode for NS3 protease. These findings will be of importance for designing efficient inhibitor to suppress HCV processing.

Molecular and Structural Characterization of the Domain 2 of Hepatitis C Virus Non-structural Protein 5A

  • Liang, Yu;Kang, Cong Bao;Yoon, Ho Sup
    • Molecules and Cells
    • /
    • v.22 no.1
    • /
    • pp.13-20
    • /
    • 2006
  • Hepatitis C virus (HCV) non-structural protein 5A protein (NS5A), which consists of three functional domains, is involved in regulating viral replication, interferon resistance, and apoptosis. Recently, the three-dimensional structure of the domain 1 was determined. However, currently the molecular basis for the domains 2 and 3 of HCV NS5A is yet to be defined. Toward this end, we expressed, purified the domain 2 of the NS5A (NS5A-D2), and then performed biochemical and structural studies. The purified domain 2 was active and was able to bind NS5B and PKR, biological partners of NS5A. The results from gel filtration, CD analysis, 1D $^1H$ NMR and 2D $^1H-^{15}N$ heteronuclear single quantum correlation (HSQC) spectroscopy indicate that the domain 2 of NS5A appears to be flexible and disordered.

Nonstructural Protein 5B of Hepatitis C Virus

  • Lee, Jong-Ho;Nam, In Young;Myung, Heejoon
    • Molecules and Cells
    • /
    • v.21 no.3
    • /
    • pp.330-336
    • /
    • 2006
  • Since its identification in 1989, hepatitis C virus has been the subject of extensive research. The biology of the virus and the development of antiviral drugs are closely related. The RNA polymerase activity of nonstructural protein 5B was first demonstrated in 1996. NS5B is believed to localize to the perinuclear region, forming a replicase complex with other viral proteins. It has a typical polymerase structure with thumb, palm, and finger domains encircling the active site. A de novo replication initiation mechanism has been suggested. To date, many small molecule inhibitors are known including nucleoside analogues, non-nucleoside analogues, and pyrophosphate mimics. NS5B interacts with other viral proteins such as core, NS3, 4A, 4B, and 5A. The helicase activity of NS3 seems necessary for RNA strand unwinding during replication, with other nonstructural proteins performing modulatory roles. Cellular proteins interacting with NS5B include VAMP-associated proteins, heIF4AII, hPLIC1, nucleolin, PRK2, ${\alpha}$-actinin, and p68 helicase. The interactions of NS5B with these proteins might play roles in cellular trafficking, signal transduction, and RNA polymerization, as well as the regulation of replication/translation processes.

Hepatitis C Virus Nonstructural Protein 5A Interacts with Immunomodulatory Kinase IKKε to Negatively Regulate Innate Antiviral Immunity

  • Kang, Sang-Min;Park, Ji-Young;Han, Hee-Jeong;Song, Byeong-Min;Tark, Dongseob;Choi, Byeong-Sun;Hwang, Soon B.
    • Molecules and Cells
    • /
    • v.45 no.10
    • /
    • pp.702-717
    • /
    • 2022
  • Hepatitis C virus (HCV) infection can lead to chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. HCV employs diverse strategies to evade host antiviral innate immune responses to mediate a persistent infection. In the present study, we show that nonstructural protein 5A (NS5A) interacts with an NF-κB inhibitor immunomodulatory kinase, IKKε, and subsequently downregulates beta interferon (IFN-β) promoter activity. We further demonstrate that NS5A inhibits DDX3-mediated IKKε and interferon regulatory factor 3 (IRF3) phosphorylation. We also note that hyperphosphorylation of NS5A mediates protein interplay between NS5A and IKKε, thereby contributing to NS5A mediated modulation of IFN-β signaling. Lastly, NS5A inhibits IKKε-dependent p65 phosphorylation and NF-κB activation. Based on these findings, we propose NS5A as a novel regulator of IFN signaling events, specifically by inhibiting IKKε downstream signaling cascades through its interaction with IKKε. Taken together, these data suggest an additional mechanistic means by which HCV modulates host antiviral innate immune responses to promote persistent viral infection.

Inhibition of Hepatitis C Virus (HCV) Replication by Hammerhead Ribozyme Which Activity Can Be Allosterically Regulated by HCV NS5B RNA Replicase (C형 간염바이러스(HCV)의 NS5B RNA Replicase에 의해 활성이 유도되는 Hammerhead 리보자임에 의한 HCV 복제 억제 연구)

  • Lee, Chang-Ho;Lee, Seong-Wook
    • Korean Journal of Microbiology
    • /
    • v.47 no.3
    • /
    • pp.188-193
    • /
    • 2011
  • As a specific and effective therapeutic genetic material against hepatitis C virus (HCV) multiplication, HCV internal ribosome entry site (IRES)-targeting hammerhead ribozyme which activity is allosterically regulated by HCV regulatory protein, NS5B RNA replicase, was constructed. The allosteric ribozyme was composed of sequence of RNA aptamer to HCV NS5B, communication module sequence which can transfer structural transition for inducing ribozyme activity upon binding NS5B to the aptamer, and sequence of ribozyme targeting +382 nucleotide of HCV IRES. With real-time PCR analysis, the ribozyme was found to efficiently inhibit HCV replicon replication in cells. Of note, the allosteric ribozyme was shown to inhibit HCV replicon replication more efficiently than either HCV genome-targeting ribozyme or NS5B aptamer only. This allosteric ribozyme can be used as a lead genetic agent for the specific and effective suppression of HCV replication.

Identification of a Cellular Protein Interacting with RNA Polymerase of Hepatitis C Virus

  • Park, Kyu-Jin;Choi, Soo-Ho;Koh, Moon-Soo;Kim, Sung-Wan;Hwang, Soon-Bong
    • BMB Reports
    • /
    • v.33 no.1
    • /
    • pp.59-62
    • /
    • 2000
  • Hepatitis C virus (HCV) nonstructural 5B (NS5B) protein is an RNA-dependent RNA polymerase (RdRp). To determine whether it can contribute to viral replication by interaction with cellular proteins, the yeast two-hybrid screening system was employed to screen a human liver cDNA library. Using the HCV NS5B as a bait, we have isolated positive clones encoding a cellular protein. The NS5B interacting protein, 5BIP, is a novel cellular protein of 170 amino acids. Interaction of the HCV NS5B protein with 5BIP was confirmed by a protein-protein blotting assay. Recently, we have demonstrated that NS5B possesses an RdRp activity and thus it is possible that 5BIP, in association with NS5B, plays a role in HCV replication.

  • PDF

Cloning and Expression of NS5 Region of Korean Type Hepatitis C Virus (한국형 C형 간염 바이러스의 NS5 지역 cDNA 클로닝과 발현)

  • Han, Dong-Pyou;Lee, Taek-Youl;Kim, Won-Bae;Kim, Byong-Moon;Chang, Mi-Yoon;Yang, Jai-Myung
    • The Journal of Korean Society of Virology
    • /
    • v.27 no.2
    • /
    • pp.115-128
    • /
    • 1997
  • Three cDNA fragments located within NS5 region of HCV were synthesized by RT using viral RNA extracted from blood sample of Korean patient as a template. The cDNAs were amplified by PCR, cloned into the T-vector, and the nucleotide sequences were determined. Comparative analysis of the nucleotide and amino acid sequence of NS5 cDNAs showed that it is closely related with HCV type 1b. The cloned NS5 cDNA showed 91-94% homology at the nucleotide sequence level and 96-98% homology at the amino acid sequence level with several strains of the HCV type 1b. The NS5 cDNAs were subcloned into E. coli expression vectors to construct pRSETA5-1, pTHAN5-1, pRSETC5-2, pRSETBB1, pRESTCB1 and pRSETB-H3. Expression of the NS5 proteins was achieved by inducing the promoter with isopropyl-thio-${\beta}$-D-galactoside (IPTG) and confirmed by SDS-polyacrylamide gel electrophoresis. The NS5 proteins were immunoreactive against sera from Korean hepatitis C patients in Western blot analysis. Among the recombinant NS5 proteins, pRSETAS-1 plasmid derived protein, coded from aa2022 to aa2521 of HCV polyprotein, showed the strongest immunoreactivity against sera from Korean hepatitis C patients in immunoblot analysis. These results suggest that NS5 proteins would be useful as an antigen for detection of antibody against HCV in the blood samples.

  • PDF

Cyclophilin A as a New Therapeutic Target for Hepatitis C Virus-induced Hepatocellular Carcinoma

  • Lee, Jinhwa
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.5
    • /
    • pp.375-383
    • /
    • 2013
  • Hepatocellular carcinoma (HCC) related to hepatitis B virus (HBV) and hepatitis C virus (HCV) infections is thought to account for more than 80% of primary liver cancers. Both HBV and HCV can establish chronic liver inflammatory infections, altering hepatocyte and liver physiology with potential liver disease progression and HCC development. Cyclophilin A (CypA) has been identified as an essential host factor for the HCV replication by physically interacting with the HCV non structural protein NS5A that in turn interacts with RNA-dependent RNA polymerase NS5B. CypA, a cytosolic binding protein of the immunosuppressive drug cyclosporine A, is overexpressed in many cancer types and often associated with malignant transformation. Therefore, CypA can be a good target for molecular cancer therapy. Because of antiviral activity, the CypA inhibitors have been tested for the treatment of chronic hepatitis C. Nonimmunosuppressive Cyp inhibitors such as NIM811, SCY-635, and Alisporivir have attracted more interests for appropriating CypA for antiviral chemotherapeutic target on HCV infection. This review describes CypA inhibitors as a potential HCC treatment tool that is contrived by their obstructing chronic HCV infection and summarizes roles of CypA in cancer development.

Evaluation of Inhibitory Effects of Thiobarbituric Acid Derivatives Targeting HCV NS5B Polymerase

  • Lee, Jong-Ho;Lee, Sang-Yoon;Park, Mi-Young;Ha, Hyun-Joon;Myung, Hee-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.3
    • /
    • pp.510-512
    • /
    • 2010
  • A series of thiobarbituric acid derivatives were constructed and evaluated for inhibitory activity on hepatitis C virus NS5B polymerase. In biochemical assays using purified viral polymerase and RNA template, the $IC_{50}$ value was improved to 0.41 ${\mu}M$ from the original compound's 1.7 ${\mu}M$ value. In HCV sub genomic replicon assay, the $EC_{50}$ value was improved to 3.7 ${\mu}M$ from the original compound's 12.3 ${\mu}M$ value. $CC_{50}$ was higher than 77 ${\mu}M$ for all compounds tested, suggesting that they are useful candidates for anti-HCV therapy.

Inhibition of the Replication of Hepatitis C Virus Replicon with Nuclease-Resistant RNA Aptamers

  • Shin, Kyung-Sook;Lim, Jong-Hoon;Kim, Jung-Hye;Myung, Hee-Joon;Lee, Seong-Wook
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.10
    • /
    • pp.1634-1639
    • /
    • 2006
  • Hepatitis C virus (HCV)-encoded nonstructural protein 5B (NS5B) possesses RNA-dependent RNA polymerase activity, which is considered essential for viral proliferation. Thus, HCV NS5B is a good therapeutic target protein for the development of anti-HCV agents. In this study, we isolated two different kinds of nuclease-resistant RNA aptamers with 2'-fluoro pyrimidines against the HCV NS5B from a combinatorial RNA library with 40 nucleotide random sequences, using SELEX technology. The isolated RNA aptamers were observed to specifically and avidly bind the HCV NS5B with an apparent $K_d$ of 5 nM and 18 nM, respectively, in contrast with the original RNA library that hardly bound the target protein. Moreover, these aptamers could partially inhibit RNA synthesis of the HCV subgenomic replicon when transfected into Huh-7 hepatoma cell lines. These results suggest that the RNA aptamers selected in vitro could be useful not only as therapeutic agents of HCV infection but also as a powerful tool for the study of the HCV RNA-dependent RNA polymerase mechanism.