• Title/Summary/Keyword: Hepatic metabolites

Search Result 63, Processing Time 0.027 seconds

Metabolism and Disposition of Myristicin in the Isolated Perfused Rat Liver

  • Jeong, Chang Kyun;Kim, Kyun;Lee, Hye Suk
    • Journal of Applied Biological Chemistry
    • /
    • v.44 no.4
    • /
    • pp.180-184
    • /
    • 2001
  • To investigate the hepatic metabolism of myristicin isolated rat livers were perfused under single-pass conditions with perfusate containing myristicin. In outflow perfusate and bile, 5-allyl-1-methoxy-2,3-dihydroxybenzene (M1), M1-sulfate, and M1-glucuronide conjugates were identified as the metabolites of myristicin. HPLC method with UV detection was applied to investigate the hepatic disposition of the compounds. The concentration of myristicin, M1, and M1-conjugates in the outflow perfusate reached steady-state levels within 20 min after commencing the perfusion of $4.5{\mu}M$ myristicin. At steady-state, the mean (${\pm}S.D.$) extraction ratio of myristicin was $0.49({\pm}0.16)$ and clearance was $13.7({\pm}4.5)ml/min$. M1 accounted for $44.0{\pm}5.3%$ of eliminated myristicin and was recovered as unchanged M1, M1-sulfate, and M1-glucuronide in the bile and outflow perfusate.

  • PDF

Effects of Wolguk-whan Water Extract on Acute Oxidative Liver Injury Induced by Acetaminophen (월국환(越鞠丸) 물 추출물이 Acetaminophen으로 유도된 마우스의 급성 간손상에 미치는 효과)

  • Lee Chae-Jung;Park Sun-Dong;Moon Jin-Young
    • Herbal Formula Science
    • /
    • v.11 no.2
    • /
    • pp.135-146
    • /
    • 2003
  • Objectives : Wolguk-whan has been used as a prescription of natural drug for the treatment of stress digestive system disease. Recently, we reported that Wolguk-whan methnol extract (WGWM) exerted a significant protective effect against oxidative damage to the liver of ICR mice. This study was purposed to investigate the effects of Wolguk-whan water extract (WGWW) on liver injury induced by oxidative stress. Methods : In order to investigate the effects of WGWW on acute liver injury, ICR mice were pretreated with WGWW for 6days, starved for 24hrs, and administerated acetamirtophen(500mg/kg, i.p.). In the liver homogenates, lipid peroxide and glutathione(GSH) levels were measured. In addition, activities of hepatic enzyme, such as catalase, glutathione peroxidase(GSH-Px), glutathione S-transferase(GST) were measured in the hepatic mitochondrial and cytosolic fractions. Results : In vivo administeration of WGWW showed effective inhibition of acetaminophen induced lipid peroxidation, and showed elevations of GSH level, catalase, GSH-Px, GST activities. Conclusions : These results suggested that WGWW might suppress the formation of oxidative metabolites, and prevent acetaminophen induced hepatotoxicity.

  • PDF

Toxicity and Carcinogenicity of Dichlorodiphenyltrichloroethane (DDT)

  • Harada, Takanori;Takeda, Makio;Kojima, Sayuri;Tomiyama, Naruto
    • Toxicological Research
    • /
    • v.32 no.1
    • /
    • pp.21-33
    • /
    • 2016
  • Dichlorodiphenyltrichloroethane (DDT) is still used in certain areas of tropics and subtropics to control malaria and other insect-transmitted diseases. DDT and its metabolites have been extensively studied for their toxicity and carcinogenicity in animals and humans and shown to have an endocrine disrupting potential affecting reproductive system although the effects may vary among animal species in correlation with exposure levels. Epidemiologic studies revealed either positive or negative associations between exposure to DDT and tumor development, but there has been no clear evidence that DDT causes cancer in humans. In experimental animals, tumor induction by DDT has been shown in the liver, lung, and adrenals. The mechanisms of hepatic tumor development by DDT have been studied in rats and mice. DDT is known as a non-genotoxic hepatocarcinogen and has been shown to induce microsomal enzymes through activation of constitutive androstane receptor (CAR) and to inhibit gap junctional intercellular communication (GJIC) in the rodent liver. The results from our previously conducted 4-week and 2-year feeding studies of p,p'-DDT in F344 rats indicate that DDT may induce hepatocellular eosinophilic foci as a result of oxidative DNA damage and leads them to hepatic neoplasia in combination with its mitogenic activity and inhibitory effect on GJIC. Oxidative stress could be a key factor in hepatocarcinogenesis by DDT.

1-OH-Pyrene and 3-OH-Phenanthrene in Urine Show Good Relationship with their Parent Polycyclic Aromatic Hydrocarbons in Muscle in Dairy Cattle

  • Kang, Hwan-Goo;Jeong, Sang-Hee
    • Toxicological Research
    • /
    • v.27 no.1
    • /
    • pp.15-18
    • /
    • 2011
  • The toxicities of phenanthrene (PH) and pyrene (PY) are less than benzo(a)pyrene (BaP), but both compounds are found in higher concentrations in the air, feed, and food. Most PAHs are metabolized to hydroxylated compounds by the hepatic cytochrome P450 monooxigenases system. Metabolites are excreted into urine and feces. We determined concentrations of PH, PY and BaP in muscle and hydroxylated metabolites, 3-OH-PH, 1-OH-PY, and 3-OH-BaP, respectively, in urine from dairy cattle (n = 24). We also evaluated the relationship between parent compounds in muscle and their metabolites in urine. Concentrations of PH and PY in muscle ranged from 0.7~4.8 ng/g ($1.8{\pm}1.7$) and 0.4~4.1 ng/g ($1.2{\pm}1.2$), respectively. Concentrations of 3-OH-PH and 1-OH-PY in urine ranged from 0.1~5.9 ng/ml ($2.9{\pm}3.7$) and 0.5~3.6 ng/ml ($1.9{\pm}2.3$), respectively. Correlation coefficient for PY concentration in muscle versus 1-OH-PY in urine was 0.657 and for PH concentration in muscle versus 3-OH-PH in urine was 0.579. Coefficient determination for PY and PH concentrations in muscle was 0.886 and for 1-OH-PY and 3-OH-PH in urine was 0.834. This study suggests that 1-OH-PY and 3-OH-PH could be used as biomarkers for PAHs exposure in dairy cattle.

Impaired Metabolomics of Sulfur-Containing Substances in Rats Acutely Treated with Carbon Tetrachloride

  • Kim, Sun-Ju;Kwon, Do-Young;Choi, Kwon-Hee;Choi, Dal-Woong;Kim, Young-Chul
    • Toxicological Research
    • /
    • v.24 no.4
    • /
    • pp.281-287
    • /
    • 2008
  • Impairment of hepatic metabolism of sulfur-containing amino acids has been known to be linked with induction of liver injury. We determined the early changes in the transsulfuration reactions in liver of rats challenged with a toxic dose of $CCl_4$ (2 mmol/kg, ip). Both hepatic methionine concentration and methionine adenosyltransferase activity were increased, but S-adenosylmethionine level did not change. Hepatic cysteine was increased significantly from 4 h after $CCl_4$ treatment. Glutathione (GSH) concentration in liver was elevated in $4{\sim}8$ h and then returned to normal in accordance with the changes in glutamate cysteine ligase activity. Cysteine dioxygenase activity and hypotaurine concentration were also elevated from 4 h after the treatment. However, plasma GSH concentration was increased progressively, reaching a level at least several fold greater than normal in 24 h. ${\gamma}$-Glutamyltransferase activity in kidney or liver was not altered by $CCl_4$, suggesting that the increase in plasma GSH could not be attributed to a failure of GSH cycling. The results indicate that acute liver injury induced by $CCl_4$ is accompanied with extensive alterations in the metabolomics of sulfurcontaining amino acids and related substances. The major metabolites and products of the transsulfuration pathway, including methionine, cysteine, hypotaurine, and GSH, are all increased in liver and plasma. The physiological significance of the change in the metabolomics of sulfur-containing substances and its role in the induction of liver injury need to be explored in future studies.

Expression of Rat Hepatic Glutathione-S-Transferases by Benzoazoles (Benzoazole계 화합물이 glutathione-S-transferases의 유도발현에 미치는 영향)

  • 서경원;김연정;김태완;김효정;조민경;김상건
    • Environmental Analysis Health and Toxicology
    • /
    • v.13 no.3_4
    • /
    • pp.55-61
    • /
    • 1998
  • Glutathione-S-transferases (GSTs) detoxify electrophilic xenobiotics and reactive metabolites. Recently benzene-fused heterocycles have been shown to increase the total amount of hepatic GSTs in rats. Primarily this study aimed to determine the induction of GSTs by benzoazoles (BAs) including benzoxazole (BX), 2-methylbenzoxazole (M-BX), 2,5-dimethyl benzoxazole (D-BX), benzothiazole (BT), aminobenzothiazole (A-BT) and 2-mercaptobenzothiazole (M-BT) in rats. Hepatic cytosol and poly(A)$^+$ mRNA were prepared from rats after oral administration of BX, BT, M-BX, D-BX, A-BT and M-BT for 5 consecutive days at doses of 1 mmol/kg. Western immunoblot and northern blot analysis were conducted with rabbit anti-GST Ya, Yb$_1$, Yb$_2$, Yc antibodies and cDNA probes containing = 500 bps in the specific coding regions of Ya, Yb$_1$, Yb$_2$, Yc$_1$, and Yc$_2$, respectively. All BAs increased the amount of enzymes and mRNA levels of GSTs. BT was the most effective inducer of GSTs among the compounds examined in this study. Although A-BT and M-BT, the derivatives of BT, induced GSTs, these chemicals had lesser effect on induction of GSTs than BT. The derivatives of BX also induced less GSTs than the parent compound and the addition of methyl group to the benzene ring of BX reduced the induction of GSTs. BAs had better inductive effects on the class $\alpha$(Ya, Yc) than class $\mu$ GSTs (Yb$_1$, Yb$_2$). BAs enhanced mRNA levels of GSTs in parallel with the protein levels. These results indicate that 1) most of BAs induced various isozymes of GSTs, 2) the induction of GSTs appears to be correlated with the chemical structure of the derivatives, and 3) the expression of GST by BAs is presumably under the transcriptional regulation.

  • PDF

Effects of Water Extract in Fruits of Omija (Schizandra chinensis Baillon) Alloxan-induced diabetic Rats (오미자 열매의 물추출물이 Alloxan-induced diabetic rats에 미치는 효과)

  • Lee, Joung-Sook;Lee, Sung-Woo
    • Journal of the Korean Society of Food Culture
    • /
    • v.5 no.2
    • /
    • pp.265-268
    • /
    • 1990
  • The effect of water extract in fruits of Omija (Schizandra chinensis Baillon) on alloxan-induced diabetic rats were determining the contents of metabolites and enzyme activities in the liver and serum of rat. The treatment with water extract in fruits of Omija showed increased in contents of protein, glycogen, and activity of glucose-6-phosphate dehydrogenase and a decreased in pyruvate content in the hepatic tissue from the alloxan treated group. These treatments were decreased contents of glucose, urea nitrogen, free fatty acid and activities of GPT, GOT, LDH.

  • PDF

Effects of Water Extracts in fruits of Omija (Schizandra chinensis Baillon) on Alcohol Metabolism (오미자 열매의 물추출물이 알콜대사에 미치는 효과)

  • Lee, Joung-Sook;Lee, Sung-Woo
    • Journal of the Korean Society of Food Culture
    • /
    • v.5 no.2
    • /
    • pp.259-263
    • /
    • 1990
  • To assess the effects of water extracts in fruits of Omija (Schizandra chinensis Baillon) on alcohol metabolism, rats were orally administrated with alcohol (25% alcohol, 0.75g/200g B.W., 40% alcohol, 0.8g/200g B.W.). The level of metabolites and enzyme activities of the serum and liver were unchanged by the 25% ethanol or 40% ethanol treatment with acute orally administration. Blood alcohol level was markdely decreased by the treatment with water extracts in fruits of Omija. The serum level of Urea nitrogen, Free fatty acid, GPT and LDH were tended to decreased, level of GOT was unchanged. Contents of hepatic microsomal protein, glycogen, pyruvate in the liver were increased by water extracts in fruits of Omija. In conclusion, the present study clearly demonstrates that water extract in fruits of Omija promotes the overall metabolism and detoxication of alcohol.

  • PDF

Screening of Alcohol Dehydrogenase Inhibitors from Natural Products (천연물로부터 알코올 탈수소효소 저해제 검색)

  • 이현주;이강만
    • YAKHAK HOEJI
    • /
    • v.43 no.4
    • /
    • pp.481-486
    • /
    • 1999
  • Excessive or long term ingestion of alcohol may cause hepatitis, cirrhosis, hepatic tumor and so on. Aldehyde and active form of free oxygen that are metabolites of alcohol in liver are the cause of liver cell damage. The main system of alcohol metabolism is composed of alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH) and cytochrome P450. In connection with in vivo alcohol metabolism, more than one hundred natural products were screened for inhibition or activation of alcohol dehydrogenase. As a results, we found significant inhibition ($IC_50$) of ADH by methanolic extracts of Puerariae Radix ($61.2{\;}\mu\textrm{g}/ml$), Glycyrrhizae Radix ($105.0{\;}\mu\textrm{g}/ml$), Cinnamomi Ramulus ($7.0{\;}\mu\textrm{g}/ml$), Rhei Rhizoma ($36.7{\;}\mu\textrm{g}/ml$), Mori Cortex Radicis ($106.2{\;}\mu\textrm{g}/ml$), Chrysanthemi Flos ($112.2{\;}\mu\textrm{g}/ml$), Erycibes Caulis ($36.7{\;}\mu\textrm{g}/ml$), and Scutellariae Radix ($122.5{\;}\mu\textrm{g}/ml$)

  • PDF

A case of Hypothermia Resulting from Disulfiram-Ethanol Reaction (다이설피람-에탄올 반응에 의한 저체온증 1례)

  • Bae, Hyun-A;Eo, Eun-Kyung
    • Journal of The Korean Society of Clinical Toxicology
    • /
    • v.2 no.1
    • /
    • pp.54-57
    • /
    • 2004
  • Disulfiram (tetraethylthiuram disulphid) is used in the treatment of chronic alcoholism since it causes an unpleasant aversive reaction to alcohol. It works by inactivating hepatic aldehyde dehydrogenase, leading to pronounced rise in the acetaldehyde concentration when ethanol is metabolized. Acetaldehyde causes alcohol sensitivity, which involve vasodilation associated with feeling of hotness and facial flushing, increased heart rate and respiration rates, lowered blood pressure, nausea, headache. One of its metabolites, diethyldithiocarbamate (DDC) can inhibit the enzyme dopamine $\beta$-hydroxylase (DBH), this may account for the profound refractory hypotension and hypothermia seen with the disulfiram-ethanol reaction (DER), resulting from norepinephrine depletion. This report is presents the case of a patient we met, who presented with hypothermia caused by the disulfiram-ethanol reaction, and along with a brief review of the subject.

  • PDF