• Title/Summary/Keyword: HepG2 human hepatoma cell

Search Result 97, Processing Time 0.026 seconds

Activation of Antioxidant-Response Element (ARE), Mitogen- Activated Protein Kinases (MAPKs) and Caspases by Major Green Tea Polyphenol Components during Cell Survival and Death

  • Chen, Chi;Yu, Rong;Owuor, Edward D.;Kong, A.NTony
    • Archives of Pharmacal Research
    • /
    • v.23 no.6
    • /
    • pp.605-612
    • /
    • 2000
  • Green tea polyphenols (GTP) have been demonstrated to suppress tumorigenesis in several chemical-induced animal carcinogenesis models, and predicted as promising chemopreventive agents in human. Recent studies of GTP extracts showed the involvement of mitogen-activated protein kinases (MAPKs) in the regulation of Phase II enzymes gene expression and induction of apoptosis. In the current work we compared the biological actions of five green tea catechins: (1) induction of ARE reporter gene, (2) activation of MAP kinases, (3) cytotoxicity in human hepatoma HepG2-C8 cells, and (4) caspase activation in human cervical squamous carcinoma HeLa cells. For the induction of phase IIgene assay, (-)-epigallocatechin-3-gallate (EGCG) and (-)-epicatechin-3-gallate (ECG) potently induced antioxidant response element (ARE)-mediated luciferase activity, with induction observed at 25 $\mu\textrm{m}$with EGCG. The induction of ARE reporter gene appears to be structurally related to the 3-gallate group. Comparing the activation of MAPK by the five polyphenols, only EGCG showed potent activation of all three MAPKs (ERK, JNK and p38) in a dose- and time-dependent manner, whereas EGC activated ERK and p38. In the concentration range of 25 $\mu\textrm{m}$ to 1 mM, EGCG and ECG strongly suppressed HepG2-ARE-C8 cell-growth. To elucidate the mechanisms of green tea polyphenol-induced apoptosis, we measured the activation of an important cell death protein, caspase-3 induced by EGCG, and found that caspase-3 was activated in a dose- and time-dependent manner. Interestingly, the activation of caspase-3 was a relatively late event (peaked at 16 h), whereas activation of MAPKs was much earlier (peaked at 2 h). It is possible, that at low concentrations of EGCG, activation of MAPK leads to ARE-mediated gene expression including phase II detoxifying enzymes. Whereas at higher concentrations of EGCG, sustained activation of MAPKs such as JNK leads to apoptosis. These mechanisms are currently under investigation in our laboratory. As the most abundant catechin in GTP extract, we found that EGCG potently induced ARE-mediated gene expression, activated MAP kinase pathway, stimulated caspase-3 activity, and induced apoptosis. These mechanisms together with others, may contribute to the overall chemopreventive function of EGCG itself as well as the GTP.

  • PDF

Inhibitory Effect of Salvia miltiorrhiza Extract on Growth of Some Cancer Cells (단삼(Salvia Miltiorrhiza) 추출물의 암세포 증식 억제 효과에 관한 연구)

  • 정국찬;이지영;김동청;서성옥;황우익
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.29 no.4
    • /
    • pp.726-731
    • /
    • 2000
  • This study was performed to evaluate the antitumor activities of water and ethanol (EtOH) extract of Salvia miltiorrhiza in vitro and in vivo. The proliferation of the human hepatoma (HepG2), rectum cancer (HRT-18) and colon cancer (HT-29) cells was inhibited by administration of extracts in a dose-dependent manner. Particularly, EtOH extract inhibited proliferation of the cells more effectively than water extract did. The morphology of cells induced by EtOH extract was characterized by reduction of cell size and deformatin. Oral administration of the EtOH extract (3 mg/head) to tumor-bearing mice inhibited the tumor (sarcoma-180) growth by 35% and prolonged their survival rate by 61%. The EtOH extract was shown to be nontoxic at 37.5% mg/head/day on the acute toxicity test. These studies suggest that the EtOH extract of Salvia miltiorrhiza may have antitumor activity in vitro and in vivo.

  • PDF

An Antitumor Component from Fomitiporia ellipsoidea

  • Zan, Lifeng;Bao, Haiying;Bau, Tolgor;Liu, Hanbin;Cui, Baokai
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.11
    • /
    • pp.1482-1485
    • /
    • 2012
  • A natural furan derivative was isolated from the methanolic extract of the fruit bodies of Fomitiporia ellipsoidea. Its chemical structure was elucidated as methyl 3,5-dioxo-1,3,5,7-tetrahydrobenzo[1,2-c:4,5-c']difuran-4-carboxylate by means of extensive NMR and MS data analysis, and named as fomitiporiaester A (1). Compound 1 showed significant antitumor activity to hepatoma $H_{22}$ in vivo, and the inhibition rates were 42.94%, 49.17%, and 58.15% at concentrations of 5, 10, and 20 mg/kg, respectively. Compound 1 showed weak cytotoxic activities against the human hepatoblastoma (HepG-2) and human oophoroma (Skov 3) cell lines with$IC_{50}$ values of more than $100{\mu}M$.

Effects of Cancer Prevention and Immune Stimulation of Fractions from Capsosiphon fulvescens (매생이 추출분획의 암 예방 및 면역증진 효과)

  • Kim, Nam-Young;Jang, Min-Kyung;Lee, Dong-Geun;Lee, Jae-Hwa;Ha, Jong-Myung;Ha, Bae-Jin;Jang, Jeong-Su;Lee, Sang-Hyeon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.5
    • /
    • pp.1249-1253
    • /
    • 2006
  • The fractions of Capsosiphon fulvescens were studied to verify the anticancer and immunostimulating activity. The fractions from the ethanol extract of C. fulvescens were prepared by the systematic extraction procedure with the solvents such as hexane, ethyl ether, methanol, butanol and H$_2$O. The cytotoxic effects of C. fulvescens fractions against human leukemia cell line U937, mouse neuroblastoma cell line (NB41A3), human hepatoma cell line (HepG2)and rat glioma cell line (C6) were investigated. Ethyl ether fraction of C. fulvescens showed the highest cytotoxicity against all four cell lines tested. In addition, H$_2$O fraction also showed relatively high cytotoxicity. Dose dependent patterns were observed on all four cell lines. The immune-stimulating effects of C. fulvescens fractions on rat macrophage cell line (RAW 264.7) were also investigated. All five fractions of C. fulvescens extract stimulated NO production with concentration dependant manner. These results suggest that C. fulvescens may be a useful candidate for a natural antitumor and immune-stimulating agent.

Effects of Linoleic Acid and Serum Albumin Concentrations on Lipid Metabolism in HepG2 Cells (간세포 배양에서 Linoleic Acid와 혈청알부민의 첩가가 지질대사에 미치는 영향)

  • Cha, Jae-Young;Cho, Young-Su
    • Applied Biological Chemistry
    • /
    • v.42 no.3
    • /
    • pp.229-234
    • /
    • 1999
  • The effects of linoleic acid(LA, 18 : 2) and/or bovine serum albumin(BSA) on the lipid metabolism in human hepatoma cell line HepG2 cells were evaluated. HepG2 cells were cultured in basal Dulbecco's modified Eagle's(DME) medium(Basal medium), DME medium containing 0.2 mM LA(LA medium), or DME medium containing both 0.2 mM LA and 0.2-1.0% BSA(LA+BSA medium). $[^{14}C]Acetate(0.3\;{\mu}Ci/ml\;medium)$ was added as a radioactive lipid precursor and the cells were incubated for 6 hours. An addition of LA to basal medium resulted in a decrease in the incorporation of $[^{14}C]acetate$ into total cholesterol fraction. In contrast, an addition of BSA to LA-containing medium tended to increase the incorporation of $[^{14}C]acetate$ into total cholesterol. The alteration of cholesterol metabolism in HepG2 cells incubated in LA+BSA medium was attributed by an increase in the incorporation of $[^{14}C]acetate$ into free cholesterol, but not cholesteryl ester fraction. In addition, the secretion of cholesterol was increased by LA+BSA medium, suggesting that BSA stimulates cholesterol secretion. No significant change in the incorporation of $[^{14}C]acetate$ into cellular total lipids was observed among the experimental groups. However, an increased incorporation of $[^{14}C]-labelled$ fatty acid into cellular triacylglycerol and decreased incorporation into phospholipid were observed in cells incubated with LA+BSA medium as compared to those of LA medium. The secretions of $[^{14}C]-labelled$ triacylglycerol, phospholipid, and free fatty acid were also stimulated in HepG2 cells incubated with LA+BSA medium. In conclusion, the present study suggests that in human hepatocytes, LA and BSA influence lipid metabolism, and BSA enhances the secretion of lipids.

  • PDF

Protective effects against alcoholic liver damage: potential of herbal juice (HJ), blend of Zingiber officinale Roscoe and Pueraria lobata Ohwi extracts

  • Young Yun Jung;You Yeon Choi;Woong Mo Yang;Kwang Seok Ahn
    • Journal of Convergence Korean Medicine
    • /
    • v.5 no.1
    • /
    • pp.45-54
    • /
    • 2023
  • Objectives : Alcohol-induced liver disease advances as to reactive oxygen species (ROS) and cellular lipid peroxidation increase. We examined the hepatoprotective effects of Zingiber officinale Roscoe rhizome extract (ZR), Pueraria lobata Ohwi flower extracts (PF), and a newly developed herbal juice (HJ), which was a combination of ZR and PF extracts, against ethanol-induced hepatotoxicity. Methods: The study utilized the human hepatoma cell line HepG2 cells to validate the hepatoprotective effect of HJ (50~200 ㎍/mL) against ethanol (EtOH, 700 mM)-induced liver damage. Results: HJ effectively reduced the protein expression of sterol regulatory element-binding transcription factor 1, adiponectin, and AMP-activated protein kinase in EtOH-induced HepG2 cells. The levels of ROS, total cholesterol, and triglycerides, which are the result of various synthesis and lipogenesis processes induced by EtOH in the liver, were reduced by HJ. Furthermore, the activities of alcohol dehydrogenase and aldehyde dehydrogenase, enzymes linked to alcohol degradation, were more effectively downregulated by HJ treatment compared to treatment with ZR and PF alone, all without causing cytotoxic effects. Conclusions: HJ protects the liver by inhibiting EtOH-induced lipogenesis, lowering ROS generation, and improving alcohol degradation, which is more effective than ZR and PF alone. Further, in vivo experiments can offer additional evidence regarding the effectiveness, safety, and underlying mechanism of action of HJ.

  • PDF

Hepatoprotective Effects of Sumaeyaksuk (Artemisia argyi H.) Extract on LPS-mediated Inflammatory Response (LPS에 의해 유도된 염증반응에서 섬애약쑥 추출물의 간보호 효과)

  • Kim, Dong-Gyu;Kang, Min-Jung;Shin, Jung-Hye
    • Journal of Life Science
    • /
    • v.26 no.11
    • /
    • pp.1282-1288
    • /
    • 2016
  • Artemisia, a plant widely used as traditional herbal medicine in many countries, has drawn attention of the researchers. And its extracts or compounds are known to have an efficacy of antioxidant, anti-diabete, anti-cancer, anti-inflammation and neuroprotection. Sumaeyaksuk is a variant of the Artemisia argyi and major constituents are eupatilin and jaceosidin. This study was performed to investigate the effects of the sumaeyaksuk aqueous extract on inflammatory response induced by lipopolysaccharide (LPS) in human hepatoma HepG2 cells. To examine the potential hepatoprotective properties of sumaeyaksuk extract, cell viability, as well as nitric oxide (NO), reactive oxygen species (ROS), macrophage colony-stimulating factor (M-CSF), interleukin-8 (IL-8) levels, alanine transaminase (ALT), and aspartate transaminase (AST) activities, were measured. Cytotoxic activity of extracts on HepG2 cells was measured by MTT assay. Sumaeyaksuk extract did not induce cytotoxicity at concentrations of $0{\sim}400{\mu}g/mL$. NO and ROS levels significantly decreased with increasing concentration of the extract. The secretion levels of M-CSF and IL-8 were suppressed by sumaeyaksuk extract in a dose-dependent manner. Moreover, ALT (75.4%) and AST (61.6%) levels significantly decreased in sumaeyaksuk extract-treated cells at $400{\mu}g/mL$. These results suggested that the sumaeyaksuk extract attenuates the LPS-induced hepatotoxicity resulting from regulation of inflammatory factors and could potentially be used as a hepatitis therapeutic agent.

Toxicogenomic Effect of Liver-toxic Environmental Chemicals in Human Hepatoma Cell Line

  • Kim, Seung-Jun;Park, Hye-Won;Yu, So-Yeon;Kim, Jun-Sub;Ha, Jung-Mi;Youn, Jong-Pil;An, Yu-Ri;Oh, Moon-Ju;Kim, Youn-Jung;Ryu, Jae-Chun;Hwang, Seung-Yong
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.4
    • /
    • pp.310-316
    • /
    • 2009
  • Some environmental chemicals have been shown to cause liver-toxicity as the result of bioaccumulation. Particularly, fungicides have been shown to cause varying degrees of hepatictoxicity and to disrupt steroid hormone homeostasis in in vivo models. The principal objective of this study was to evaluate the liver-toxic responses of environmental chemicals-in this case selected fungicides and parasiticides-in order to determine whether or not this agent differentially affected its toxicogenomic activities in hepatic tumor cell lines. To determine the gene expression profiles of 3 fungicides (triadimefon, myclobutanil, vinclozolin) and 1 parasiticide (dibutyl phthalate), we utilized a modified HazChem human array V2. Additionally, in order to observe the differential alterations in its time-dependent activities, we conducted two time (3 hr, 48 hr) exposures to the respective IC20 values of four chemicals. As a result, we analyzed the expression profiles of a total of 1638 genes, and we identified 70 positive significant genes and 144 negative significant genes using four fungicidic and parasiticidic chemicals, using SAM (Significant Analysis of Microarray) methods (q-value<0.5%). These genes were analyzed and identified as being related to apoptosis, stress responses, germ cell development, cofactor metabolism, and lipid metabolism in GO functions and pathways. Additionally, we found 120 genes among those time-dependently differentially expressed genes, using 1-way ANOVA (P-value<0.05). These genes were related to protein metabolism, stress responses, and positive regulation of apoptosis. These data support the conclusion that the four tested chemicals have common toxicogenomic effects and evidence respectively differential expression profiles according to exposure time.

Steroids from the Cold Water Starfish Ctenodiscus crispatus with Cytotoxic and Apoptotic Effects on Human Hepatocellular Carcinoma and Glioblastoma Cells

  • Quang, Tran Hong;Lee, Dong-Sung;Han, Se Jong;Kim, Il Chan;Yim, Joung Han;Kim, Youn-Chul;Oh, Hyuncheol
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2335-2341
    • /
    • 2014
  • Chemical investigation on the methanol extract of the starfish Ctenodiscus crispatus resulted in the isolation of five steroids, (22E,$24{\zeta}$)-26,27-bisnor-24-methyl-$5{\alpha}$-cholest-22-en-$3{\beta}$,5,$6{\beta}$,$15{\alpha}$,25-pentol 25-O-sulfate (1), (22E,24R,25R)-24-methyl-$5{\alpha}$-cholest-22-en-$3{\beta}$,5,$6{\beta}$,$15{\alpha}$,25,26-hexol 26-O-sulfate (2), (28R)-24-ethyl-$5{\alpha}$-cholesta-$3{\beta}$,5,$6{\beta}$,8,$15{\alpha}$,28,29-heptaol-24-sulfate (3), (25S)-$5{\alpha}$-cholestane-$3{\beta}$,5,$6{\beta}$,$15{\alpha}$,$16{\beta}$,26-hexaol (4), and ${\Delta}7$-sitosterol (5). Their structures were identified by extensive spectroscopic analyses, including 1D, 2D NMR and MS and chemical methods. Compound 4 showed cytotoxicity against human hepatoma HepG2 and glioblastoma U87MG cells via inhibition of cell growth and induction of apoptosis. Induction of apoptosis by 4 was demonstrated by cell death, DNA fragmentation, increased Bax/Bcl-2 protein ratio and the activation of caspase-3, caspase-9 and poly (ADP-ribose) polymerase (PARP).

Effects of Extracts of Unripe Black Raspberry and Red Ginseng on Cholesterol Synthesis (복분자 미숙과와 홍삼 추출물의 콜레스테롤 개선 효과)

  • Lee, Su Jung;Lee, Min Jung;Ko, Young Jong;Choi, Hye Ran;Jeong, Jong Tae;Choi, Kyung-Min;Cha, Jeong-Dan;Hwang, Seung-Mi;Jung, Hoo Kil;Park, Jong Hyuk;Lee, Tae Bum
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.628-635
    • /
    • 2013
  • We investigated the effects of water extracts of unripe black raspberry (UBR) and red ginseng (RG) on cholesterol synthesis, 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase activity, and expression of low-density lipoprotein (LDL) or high-density lipoprotein (HDL)-related genes in HepG2 and Caco-2 (human hepatoma and intestinal cell lines, respectively). Our results showed that cholesterol synthesis and HMG-CoA reductase activity in HepG2 cells were inhibited by UBR and RG. Further, co-treatment with UBR and RG had a greater effect than did treatment with either UBR or RG. In Caco-2 cells, treatment with UBR and RG increased the expression of LDL-regulated genes, such as LDL receptor and SREBP-2, and also upregulated the level of HDL-associated ABCA1. Moreover, co-treatment with UBR and RG appeared to be more effective than treatment with either UBR or RG. Taken together, our results indicate that UBR and RG regulate the level of HDL-associated ABCA1 via signaling pathway, thereby preventing cholesterol synthesis.