• Title/Summary/Keyword: HepG2 hepatocytes

Search Result 53, Processing Time 0.034 seconds

Hepato-Protective Activities of Jasminum officinale L. var. grandiflorum Aqueous Extract via Activation of AMPK in HepG2 Cells (AMPK 활성화를 통한 소형화(素馨花) (Jasminum officinale L. var. grandiflorum) 열수 추출물의 HepG2 간세포 보호 활성)

  • Sang Mi Park;Dae Hwa Jung;Byung Gu Min;Kyung Hwan Jegal;Sung Hui Byun;Jae Kwang Kim;Sang Chan Kim
    • Herbal Formula Science
    • /
    • v.31 no.4
    • /
    • pp.231-243
    • /
    • 2023
  • Objectives : Jasminum officinale L. var. grandiflorum is used as a traditional or folk remedy in China to treat arthritis, hepatitis, duodenitis, conjunctivitis, gastritis, and diarrhea. In this study, we aimed to study the hepatocyte protective activity and molecular mechanism of Jasminum officinale L. var. grandiflorum aqueous extract (JGW) using HepG2 hepatocyte cell lines. Methods : HepG2 cells were pretreated with diverse concentrations of JGW, and then the cells were exposed to tert-butyl hydroperoxide (tBHP) for inducing oxidative stress. Hydrogen peroxide (H2O2) production, glutathione (GSH) concentration, mitochondrial membrane potential (MMP) and cell viability were measured to investigate hepato-protective effects of JGW. Phosphorylation of AMP-activated protein kinases (AMPK), acetyl coenzyme A carboxylase (ACC) and effects of compound C on cell viability were examined to observe the role of AMPK on JGW-mediated cytoprotection. Results : Pretreatment with JGW (10-300 ㎍/mL) significantly suppressed cytotoxicity induced by tBHP in a concentration dependent manner and reduced the expression of cleaved PARP and cleaved caspase-3 proteins related to apoptosis in HepG2 cells. In addition, pretreatment with JGW significantly prevented the increase in H2O2 production, GSH depletion, and lower MMP induced by tBHP. Treatment with JGW (30 minutes of incubation and concentrations of 100 and 300 ㎍/mL) increased the phosphorylation of AMPK and ACC and treatment with compound C, a chemical inhibitor of AMPK, inhibited the cytoprotective effect of JGW. Conclusions : Our results demonstrated that JGW may protect hepatocytes from oxidative stress via activation of AMPK.

FADD Phosphorylation Modulates Blood Glucose Levels by Decreasing the Expression of InsulinDegrading Enzyme

  • Lin, Yan;Liu, Jia;Chen, Jia;Yao, Chun;Yang, Yunwen;Wang, Jie;Zhuang, Hongqin;Hua, Zi-Chun
    • Molecules and Cells
    • /
    • v.43 no.4
    • /
    • pp.373-383
    • /
    • 2020
  • Our previous study revealed a novel role of Fas-associated death domain-containing protein (FADD) in islet development and insulin secretion. Insulin-degrading enzyme (IDE) is a zinc metalloprotease that selectively degrades biologically important substrates associated with type 2 diabetes (T2DM). The current study was designed to investigate the effect of FADD phosphorylation on IDE. We found that the mRNA and protein levels of IDE were significantly downregulated in FADD-D mouse livers compared with control mice. Quantitative real-time polymerase chain reaction analysis showed that FADD regulates the expression of IDE at the transcriptional level without affecting the stability of the mRNA in HepG2 cells. Following treatment with cycloheximide, the IDE protein degradation rate was found to be increased in both FADD-D primary hepatocytes and FADD-knockdown HepG2 cells. Additionally, IDE expression levels were reduced in insulin-stimulated primary hepatocytes from FADD-D mice compared to those from control mice. Moreover, FADD phosphorylation promotes nuclear translocation of FoxO1, thus inhibiting the transcriptional activity of the IDE promoter. Together, these findings imply a novel role of FADD in the reduction of protein stability and expression levels of IDE.

An Isocoumarin with Hepatoprotective Activity in Hep G2 and Primary Hepatocytes from Agrimonia pilosa

  • Ko, Eun-Kyung;Park, Eun-Jeon;Kim, Mi-Hee;Jun, Jung-Yang;Park, Sung-Uk;Sohn, Dong-Hwan;Kim, Youn-Chul
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.383.1-383.1
    • /
    • 2002
  • In connection with our studies on the isolation of hepatoprotective constituents from natural products. we have recently reported hepatoprotective compounds including phenolic bakuchiol. diarylheptanoids. furocoumarins. In the course of continuing efforts. the aqueous extract of the roots of Agrimonia pilosa Ledeb. (Rosaceae) was found to exhibit promising hepatoprotective activity. A. pilosa is a perennial herb distributed throughout South Korea. and its roots have been used as the hemostatic. antimalarial. and antidysenteric agent in oriental medicine. Chemical investigation of the aqueous extract of the roots of this plant. as guided by hepatoprotective active catechin (2). Compound 1 showed hepatoprotective effects on both tacrine-induced cytotoxicity in human level derived Hep G2 cells and tert-hydroperoxide-induced cytotoxicity in rat primary hepatocyles with $EC_{50}$ values of 66.2 $\pm$ 2.8 and 22.9 $\pm$ 2.6 $\mu\textrm{M}$ respectively.

  • PDF

Downregulation of Hepatic De Novo Lipogenesis and Adipogenesis in Adipocytes by Pinus densiflora Bark Extract

  • Ahn, Hyemyoung;Jeong, Jeongho;Moyo, Knowledge Mudhibadi;Ryu, Yungsun;Min, Bokkee;Yun, Seong Ho;Kim, Hwa Yeon;Kim, Wooki;Go, Gwang-woong
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.11
    • /
    • pp.1925-1931
    • /
    • 2017
  • Korean red pine (Pinus densiflora) bark extract, PineXol (PX), was investigated for its potential antioxidant and anti-inflammation effects in vitro. It was hypothesized that PX treatment ($25-150{\mu}g/ml$) would reduce the lipid synthesis in HepG2 hepatocytes as well as lipid accumulation in 3T3-L1 adipocytes. Hepatocytes' intracellular triglycerides and cholesterol were decreased in the PX $150{\mu}g/ml$ treatment group compared with the control (p < 0.05). Consequently, de novo lipogenic proteins (acetyl-CoA carboxylase 1, stearoyl-CoA desaturase 1, elongase of very long chain fatty acids 6, glycerol-3-phosphate acyltransferase 1, and sterol regulatory element-binding protein 1) were significantly decreased in hepatocytes by PX $150{\mu}g/ml$ treatment compared with the control (p < 0.05). In differentiated 3T3-L1 adipocytes, the lipid accumulation was significantly attenuated by all PX treatments (p < 0.01). Regulators of adipogenesis, including CCAAT-enhancer-binding proteins alpha, peroxisome proliferatoractivated receptor gamma, and perilipin, were decreased in PX $100{\mu}g/ml$ treatment compared with the control (p < 0.05). In conclusion, PX might have anti-obesity effects by blocking hepatic lipogenesis and by inhibiting adipogenesis in adipocytes.

Ibuprofen Increases the Hepatotoxicity of Ethanol through Potentiating Oxidative Stress

  • Kim, Minjeong;Lee, Eugenia Jin;Lim, Kyung-Min
    • Biomolecules & Therapeutics
    • /
    • v.29 no.2
    • /
    • pp.205-210
    • /
    • 2021
  • Over 30 million prescriptions of NSAIDs (non-steroidal anti-inflammatory drugs) are issued every year. Considering that these drugs are available without a prescription as over the counter (OTC) drugs, their use will be astronomical. With the increasing use of NSAIDs, their adverse effects are drawing attention. Especially, stomach bleeding, kidney toxicity, liver toxicity, and neurological toxicity are reported as common. Ibuprofen, one of the extensively used NSAIDs along with aspirin, can also induce liver toxicity, but few studies are addressing this point. Here we examined the liver toxicity of ibuprofen and investigated whether co-exposure to ethanol can manifest synergistic effects. We employed 2D and 3D cultured human hepatoma cells, HepG2 to examine the synergistic hepatotoxicity of ibuprofen and alcohol concerning cell viability, morphology, and histology of 3D spheroids. As a result, ibuprofen and alcohol provoked synergistic hepatotoxicity against hepatocytes, and their toxicity increased prominently in 3D culture upon extended exposure. Oxidative stress appeared to be the mechanisms underlying the synergistic toxicity of ibuprofen and alcohol as evidenced by increased production of ROS and expression of the endogenous antioxidant system. Collectively, this study has demonstrated that ibuprofen and EtOH can induce synergistic hepatotoxicity, providing a line of evidence for caution against the use of ibuprofen in combination with alcohol.

Pharmacological Effect of Hawangyeonhaedoktang on Experimental Triglyceride Accumulated HepG2 Cells (실험적 중성지질 축적 HepG2세포에 미치는 황련해독탕의 약리적 효과)

  • 차재영;김대진;김석환;김영길;조영수
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.4
    • /
    • pp.586-590
    • /
    • 2003
  • The pharmacological effect of Korean-Chinese traditional herbal medicine, Hawangyeonhaedoktang (HT) on experimentally induced-triglyceride accumulation in cultured human hepatocyte HepG2 cells was studied. HePG2 cells were cultured in the Dulbecco's modified Eagle's (DME) medium without (Control medium) or with HT (0.5 mg/mL and 5.0 mg/mL) containing 1 mM oleate, 0.2% bovine serum albumin (BSA), and glucose 4.5 mg/mL for 6 and 24 hours in experiment I and 2 mM oleate, 0.5% BSA, and glucose 4.5 mg/mL for 6, 24 and in hours in Experiment II or 1 and 3 hours in Experiment III. Oleate [$^{14}$ C](0.5 $\mu$Ci/mL medium) added as a radioactive lipid precursor in the experiment I. In the experiment I, the intracellular triglyceride concentration was decreased remarkably during incubation for 6 and 24 hours, in a dose-dependent manner. At the same time, HT caused a decrease in the incorporation of [$^{14}$ C] oleate into intracellular triglyceride fraction and the secretion of triglyceride labeled with [$^{14}$ C] oleate into medium. In the experiment II and III compared to experiment I, the triglyceride accumulation in HepG2 cells was occurred, and HT prevented the accumulation of triglyceride during incubation for 24 and 48 hours. This result suggest that HT prevent the triglyceride accumulation in human hepatocytes by its inhibiting action on the intercellular triglyceride biosynthesis.

N-Terminal Amino Acid Sequences of Receptor-Like Proteins that Bind to preS1 of HBV in HepG2 Cells

  • Lee, Dong-Gun;Liu, Ming-Zhu;Kim, Kil-Lyong;Hahm, Kyung-Soo
    • BMB Reports
    • /
    • v.29 no.2
    • /
    • pp.180-182
    • /
    • 1996
  • One of the essential functions of virus surface proteins is the recognition of specific receptors on target cell membranes, and cellular receptors play an important role in viral pathogenesis. But the earliest steps of hepatitis B virus (HBV) infection, such as hepatocyte receptor interaction with the virus, are poorly understood. Previous work has suggested an important role of the preS1 region of HBV envelope protein in mediating viral binding to hepatocytes. Although hepatitis B virus (HBV) infection appears to be initiated by specific binding of virions to cell membrane structures via one or potentially several viral surface proteins, data showing the identification or isolation of the HBV receptor (s) are not yet available. The receptor-like proteins on the plasma membrane surface of HepG2 cells that bind to PreS1 were separated and identified using affinity chromatography, and the amino-terminal amino acid sequences of the receptor-like proteins were determined.

  • PDF

Medium- and long-chain triglyceride propofol reduces the activity of acetyl-coenzyme A carboxylase in hepatic lipid metabolism in HepG2 and Huh7 cells

  • Wang, Li-yuan;Wu, Jing;Gao, Ya-fen;Lin, Duo-mao;Ma, Jun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.1
    • /
    • pp.19-26
    • /
    • 2020
  • Medium- and long-chain triglyceride (MCT/LCT) propofol is widely used as an intravenous anesthetic, especially in the intensive care unit. The present study aimed to assess whether MCT/LCT propofol is safe in the hyperlipidemic population for long-term use. Free fatty acids (FFAs) were used to establish high-fat stimulation of HepG2 and Huh7 cells. Subsequently, these cells were treated with propofol at the concentration of 0, 4, or 8 ㎍/ml for 24 and 48 h. The results indicated that the cell viability was notably decreased when the cells were stimulated with 2 mmol/L FFAs and treated with 12 ㎍/ml MCT/LCT propofol. Accordingly, we chose 2 mmol/L FFAs along with 4 and 8 ㎍/ml MCT/LCT propofol for the subsequent experiments. Four and 8 ㎍/ml MCT/LCT propofol inhibited FFA-induced lipid accumulation in the cells and significantly reversed acetyl coenzyme A carboxylase (ACC) activity. In addition, MCT/LCT propofol not only significantly promoted the phosphorylation of AMPK and ACC, but also reversed the FFA-induced decreased phosphorylation of AMPK and ACC. In conclusion, MCT/LCT propofol reverses the negative effects caused by FFAs in HepG2 and Huh7 cells, indicating that MCT/LCT propofol might positively regulate lipid metabolism.

Berberine Suppresses Hepatocellular Carcinoma Proliferation via Autophagy-mediated Apoptosis (베르베린을 처리한 간세포암에서 자가포식 경로와 관련된 세포자멸사)

  • Yun Kyu Kim;Myeong Gu Yeo
    • Journal of Life Science
    • /
    • v.34 no.5
    • /
    • pp.287-295
    • /
    • 2024
  • Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related mortality worldwide, necessitating novel therapeutic strategies. The chemotherapeutic agents used to treat HCC patients are toxic and have serious side effects. Therefore, we investigated the efficacy of anticancer drugs that reduce side effects by targeting tumor cells without causing cytotoxicity in healthy hepatocytes. Berberine, an isoquinoline alkaloid derived from plant compounds, has emerged as a potential candidate for cancer treatment due to its diverse pharmacological properties. The effect of berberine on HepG2 cell viability was determined using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide assay. HepG2 cell proliferation was determined through a colony-forming assay. The effects of berberine on HepG2 cell migration were evaluated using a wound-healing assay. Berberine inhibited the proliferation of HepG2 cells, as well as colony formation and migration. Berberine treatment increased the expression of autophagy-related genes and proteins, including Beclin-1 and LC3-II, and elevated the activities and mRNA expression of Caspase-9 and Caspase-3. Additionally, in experiments utilizing the Cell-Derived Xenograft animal model, berberine treatment reduced tumor size and weight in a concentration-dependent manner. These results demonstrate the potential of berberine as a versatile anticancer agent with efficacy in both cellular and animal models of hepatocellular carcinoma. The findings herein shed light on berberine's efficacy against HCC, presenting opportunities for targeted and personalized therapeutic interventions.

Ameliorating Effects of Lactic Acid-fermented Garlic Extracts on Oleic Acid-induced Hepatic Steatosis (유산균 발효 마늘 추출물의 oleic acid로 유도된 비알코올성 지방간에 대한 개선 효과)

  • Lee, Hee-Seop;Lim, Won-Chul;Choi, Ji-Hwi;Yu, Heui-Jong;Kim, Ki-Ho;Lee, Seung-Hyun;Cho, Hong-Yon
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.6
    • /
    • pp.762-768
    • /
    • 2014
  • In this study, the ameliorating effects of lactic acid-fermented garlic extract (LAFGE) on non-alcoholic fatty liver were investigated using oleic acid-induced steatotic HepG2 cells. The ameliorating mechanism was analyzed by RT-PCR and Western blot. Treatment with 1 mg/mL LAFGE decreased intracellular lipid accumulation approximately 1.5-fold, compared to that achieved with non-fermented garlic extract. LAFGE reduced fatty acid influx into hepatocytes through down-regulation of FAT/CD36 mRNA expression in the steatotic HepG2 cells. $PPAR{\alpha}$ and CPT-1 mRNA expression was significantly up-regulated by LAFGE treatment of HepG2 cells as a consequence of activation of beta oxidation. Additionally, the treatment with 1 mg/mL LAFGE highly down-regulated mRNA expression of SREBP-1c and FAS to 51% and 35%, respectively. LAFGE showed concentration-dependent down-regulation patterns in protein expression of SREBP-1c and FAS, as determined by Western blot. These results suggest that LAFGE treatment improves hepatic steatosis triggered by the imbalance of hepatic lipid metabolism owing to oleic acid treatment.