• Title/Summary/Keyword: HepG2 cell-line

Search Result 190, Processing Time 0.027 seconds

In vitro Antioxidant and Cytoprotective Activities of the Extract of Dangyuja (Citrus grandis Osbeck) Leaves

  • Kim, Yun-Jung;Cho, Moon-Jae;Kim Cho, So-Mi
    • Food Science and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.1086-1091
    • /
    • 2008
  • The antioxidant activities of the extracts of dangyuja (Citrus grandis Osbeck) leaves were evaluated. The highest phenolic content was obtained from the ethyl acetate fraction (EF) (202.1$\pm$0.8 mg GAE/g dried extract) and it exhibited the highest 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity. The cytoprotective effects of EF on oxidative damage induced by tert-butyl hydroperoxide (t-BHP) in a human hepatoma cell line, HepG2 cells, were investigated to understand the intracellular antioxidant mechanisms. Treatment of HepG2 cells with EF prior to oxidative stress was found to inhibit reactive oxygen species (ROS) generation, lipid peroxidation, and DNA damage in a dose-dependent manner. Gas chromatography-mass spectrometry (GC-MS) studies on EF resulted in tentative identification of 19 compounds representing 94.3% of the total content. Taken together, these results demonstrated that EF has excellent antioxidant activities and thus dangyuja leaves have great potential as a source for natural antioxidant which can be applied in food products.

Biological Screening of Novel Derivatives of Valproic Acid for Anticancer and Antiangiogenic Properties

  • Farooq, Muhammad;El-Faham, Ayman;Khattab, Sherine N.;Elkayal, Ahmed M.;Ibrahim, Mahmoud F.;Taha, Nael Abu;Baabbad, Almohannad;Wadaan, Mohammad A.M.;Hamed, Ezaat A.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.18
    • /
    • pp.7785-7792
    • /
    • 2014
  • Background: Valproic acid (VPA) is a potent anticancer and antiangiogenic agent. However, design and synthesis of chemical derivatives with improved antiangiogenic and anticancer activities are still necessary. In this study a library of novel derivatives of VPA was synthesized and tested. Methods: A human liver cancer cell line (HepG2) and a human normal embryonic kidney cell line (HEK 293) were exposed to various concentrations of VPA derivatives for 24 hours and cell viability was checked by MTT colorimetric assay. Anti-angiogenic properties were evaluated in transgenic zebrafish embryos. Results: N-valproylglycine derivatives suppressed survival almost 70% (p value 0.001) in HepG2 cells but only 10-12% in HEK 293 cells (p value 0.133). They also suppressed angiogenic blood vessel formation by 80% when used between $2-20{\mu}M$ in zebrafish embryos. Valproic acid hydrazides showed moderate level of anticancer activity by affecting 30-50% (p value 0.001) of cell viability in HepG2 cells and 8-10% in HEK293 cells (p value 0.034). Conclusion: The majority of compounds in this study showed potent and stronger antiangiogenic and anticancer activity than VPA. They proved selectively toxic to cancer cells and safer for normal cells. Moreover, these compounds inhibited developmental angiogenesis in zebrafish embryos. Based on the fact that liver is a highly vascularized organ, in case of liver carcinoma these compounds have the potential to target the pathological angiogenesis and could be an effective strategy to treat hepatocellular carcinoma.

Effect of NADPH Oxidase Inhibition on Heme Oxygenase-1 Expression in Human Hepatoma Cell Line HepG2 (인간 간암세포주 HepG2에서 NADPH oxidase 활성 억제에 의한 heme oxygenase-1 발현의 조절)

  • Lee, Sang-Kwon;Kim, Kang-Mi;Park, Kwang-Hoon;Park, Young-Chul
    • Journal of Life Science
    • /
    • v.21 no.11
    • /
    • pp.1625-1630
    • /
    • 2011
  • Heme oxygenase-1 (HO-1) is a stress-responsive protein that is known to regulate cellular functions such as cell proliferation, inflammation, and apoptosis. In this study, we investigated the role of NADPH oxidase on the expression of HO-1 in human liver hepatoma cell line HepG2. Diphenyleneiodonium (DPI), an NADPH oxidase inhibitor, markedly inhibited HO-1 expression and the nuclear translocation of transcription factor Nrf2 in cobalt protoporphyrin (CoPP) or hemin-treated HepG2 cells. Similarly, the knockdown of $p47^{phox}$, a cytosolic factor for NADPH oxidase activity, by siRNA inhibited the CoPP-induced expression of HO-1. In addition, GSHmee, an intracellular antioxidant, blocked the expression of HO-1 in CoPP-treated cells. Based on these results, we conclude that the blockage of NADPH oxidase with DPI or $p47^{phox}$ siRNA inhibits CoPP-induced HO-1 expression in HepG2 cells, and also suggest that the expression of HO-1 in CoPP-induced HepG2 cells is associated with increase of intracellular ROS by NADPH oxidase activity.

Differential Gene Expression Induced by Naphthalene in Two Human Cell Line, HepG2 and HL-60

  • Kim, Youn-Jung;Song, Mee;Song, Mi-Kyung;Youk, Da-Young;Choi, Han-Saem;Sarma, Sailendra Nath;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.2
    • /
    • pp.99-107
    • /
    • 2009
  • Naphthalene is bicyclic aromatic compound that is widely used in various domestic and commercial applications including lavatory scent disks, soil fumigants and moth balls. Exposure to naphthalene results in the development of bronchiolar damage, cataracts and hemolytic anemia in humans and laboratory animals. However, little information is available regarding the mechanism of naphthalene toxicity. We investigated gene expression profiles and potential signature genes in human hepatocellular carcinoma HepG2 cells and human promyelocytic leukemia HL-60 cells after 3 h and 48 h incubation with the IC$_{20}$ and IC$_{50}$ of naphthalene by using 44 k agilent whole human genome oligomicroarray and operon human whole 35 k oligomicroarray, respectively. We identified 616 up-regulated genes and 2,088 down-regulated genes changed by more than 2-fold by naphthalene in HepG2 cells. And in HL-60, we identified 138 up-regulated genes and 182 down-regulated genes changed by more than 2-fold. This study identified several interesting targets and functions in relation to naphthalene-induced toxicity through a gene ontology analysis method. Apoptosis and cell cycle related genes are more commonly expressed than other functional genes in both cell lines. In summary, the use of in vitro models with global expression profiling emerges as a relevant approach toward the identification of biomarkers associated with toxicity after exposure to a variety of environmental toxicants.

The p90rsk-mediated signaling of ethanol-induced cell proliferation in HepG2 cell line

  • Kim, Han Sang;Kim, Su-Jin;Bae, Jinhyung;Wang, Yiyi;Park, Sun Young;Min, Young Sil;Je, Hyun Dong;Sohn, Uy Dong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.6
    • /
    • pp.595-603
    • /
    • 2016
  • Ribosomal S6 kinase is a family of serine/threonine protein kinases involved in the regulation of cell viability. There are two subfamilies of ribosomal s6 kinase, (p90rsk, p70rsk). Especially, p90rsk is known to be an important downstream kinase of p44/42 MAPK. We investigated the role of p90rsk on ethanol-induced cell proliferation of HepG2 cells. HepG2 cells were treated with 10~50 mM of ethanol with or without ERK and p90rsk inhibitors. Cell viability was measured by MTT assay. The expression of pERK1, NHE1 was measured by Western blots. The phosphorylation of p90rsk was measured by ELISA kits. The expression of Bcl-2 was measured by qRT-PCR. When the cells were treated with 10~30 mM of ethanol for 24 hour, it showed significant increase in cell viability versus control group. Besides, 10~30 mM of ethanol induced increased expression of pERK1, p-p90rsk, NHE1 and Bcl-2. Moreover treatment of p90rsk inhibitor attenuated the ethanol-induced increase in cell viability and NHE1 and Bcl-2 expression. In summary, these results suggest that p90rsk, a downstream kinase of ERK, plays a stimulatory role on ethanol-induced hepatocellular carcinoma progression by activating anti-apoptotic factor Bcl-2 and NHE1 known to regulate cell survival.

Effect of Ginseng Components on Content of Cholesterol and Activity of Acyl CoA.Cholesterol Acyltransferase in Hep G2 Cells Cultured in Cholesterol Rich Medium (고콜레스테를 조건으로 배양한 Hep G2세포의 콜레스테를 함량변동과 Acyl CoA : Cholesterol Acyltransferase의 활성에 미치는 인삼성분의 영향)

  • Park, Song-Chul;Noh, Yun-Hee;Koo, Ja-Hyun
    • Journal of Ginseng Research
    • /
    • v.19 no.3
    • /
    • pp.212-218
    • /
    • 1995
  • A human hepatoma cell line, hep G2, was used to investigate the mechanism of serum cholesterol reduction by ginseng total saponin, ginsenoside-$Rb_1$, - $Rb_2$, and non-saponin fraction (ether extraction). Hep G2 cells were incubated in 10 $\mu\textrm{g}$/ml of cholesterol containing serum free-RPMl1640 medium with various concentration of ginseng components. The amounts of cholesterol in Hep G2 cells were decreased to maximum 51% in total saponin or two ginsenoside-treated groups while there was 137% increase in cholesterol level of control group as compared with that of normal group. Nonsaponin groups did not show the same effect. In order to elucidate the observed changes in the amount of cholesterol, the activity of amyl CoA : cholesterol acyltransferase (ACAT) in groups showing remarkable reduction in cholesterol amount, i.e., total saponin 10-6%, ginsenoside-$Rb_1$ $10^{-4}$%, ginsenoside-$Rb_2$, $10^{-4}$%, and non-saponin fraction $10^{-4}$%, was assayed using [1-$^{-14}C$%]oleic acid as enzyme substrate. The activity of ACAT was increased in all groups tested as compared with that of control group except for non-saponin group cultured in water soluble cholesterol containing medium. The serum cholesterol lowering effects of ginseng components can partially be attributed to the increased hepatocellular ACAT activity.

  • PDF

?Effects of Duchesnea indica on Several Kinds of Cancer Cells (사매가 수종(數種)의 암세포(癌細胞)에 미치는 영향(影響))

  • Kim, Yun-Kwan;Kim, Jin-Sung;Yoon, Sang-Hyub;Ryu, Ki-Won;Ryu, Bong-Ha
    • The Journal of Internal Korean Medicine
    • /
    • v.26 no.2
    • /
    • pp.320-332
    • /
    • 2005
  • Objectives: The aim of the experiment is to identify any anti-tumor effects of Duchesnea indica(Andr.) Focke on stomach, liver, urinary bladder, prostate and kidney cancer cells. Materials & Methods: For cancer cells, AGS stomach, Hep3B and Hep3G2 liver, HT-1197, HT-1376 urinary bladder, PC3 prostate, and A-704 kidney cancer cells, all obtained from Korean Ce 11 Line Bank, were used. The boiled extract of Duchesnea indica(Andr.) Focke (10 and 20 microliters) was injected into cultures, and the cultures were observed at 0, 6 and 12 hours, and from then on at 12 hours intervals up to 72 hours. The destruction of stomach, liver, urinary bladder, prostate and kidney cancer cells were measured through Trypan blue exclusion testing. The suppresion on viability of stomach, liver, urinary bladder, prostate and kidney cancer cells was measured via MTT assay. Anti-cancer mechanisms were assessed by analyzing the cell cycle. Results: In morphologic change, AGS, Hep3B, HepG2 showed the withdrawn and floating appearance that is typical in cellular impairment. The destruction of AGS, HT-1197, HT-1376, A-704, PC-3, Hep3B and HepG2 cancer cells in each test group was greater than that in the control group to a statistically significant degree. The suppression on viability of AGS, HT-1197 and Hep3G in each test group was greater than that in the control group to a statistically significant degree. Analysis of the cell cycle after injection of D... Focke showed inhibition of cell division in all test groups(AGS, Hep3B, HepG2, HT-1197, HT-1376, PC3, A-704). Conclusions: The results of this experiment suggest that Duchesnea indica(Andr.) Focke has statistically significant anti-tumor effects on stomach, urinary bladder, kidney, prostate and liver cancer, of which stomach and liver cancer are prominently significant. This in vitro experiment supports a role for Duchesnea indica(Andr.) Focke as a potential cancer treatment, but progressive research on Duchesnea indica(Andr.) Focke and its anti-tumor effects is needed to develop a practical application for it in cancer treatment.

  • PDF

Antiviral Activities of L-FMAUS, a new L-FMAU derivative, Against Hepatitis B virus

  • Lee, Hae-Sung;Ahn, Kwang-Hyun;Lee, Young-Choon;Koo, Chang-Hui
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.80.2-80.2
    • /
    • 2003
  • The nucleoside analogue, L-FMAUS was synthesized from L-FMAU which has been shown to have significant antiviral acitivity against hepatitis B virus (HBV). The anti-HBV activity and toxicity of the L-FMAUS were examined by a cell culture system using a hepatitis B virus (HBV) producing cell line, HepG2 2.2.15. L-FMAUS was assayed for the inhibition of HBV multiplication by measurement of HBV DNA and surface antigen (HBsAg) levels in the extracellular medium of HepG2 2.2.15 cells after an 8-day treatment. (omitted)

  • PDF

Screening of Differentially Expressed Genes by Desferrioxamine or Ferric Ammonium Citrate Treatment in HepG2 Cells

  • Park, Jong-Hwan;Lee, Hyun-Young;Roh, Soon-Chang;Kim, Hae-Yeong;Yang, Young-Mok
    • BMB Reports
    • /
    • v.33 no.5
    • /
    • pp.396-401
    • /
    • 2000
  • A differential display method is used to identify novel genes whose expression is affected by treatment with ferric ammonium citrate (FAC) or desferrioxamine (DFO), an iron chelating agent in the human hepatoblastoma cell line (HepG2). These chemicals are known to deplete or increase the intracellular concentration of iron, respectively. Initially, we isolated seventeen genes whose expressions are down- or up regulated by the treatment of the chemicals, as well as their four differentially expressed genes that are designated as clone-1, -2, -3, and -4. These are further characterized by cDNA sequencing and Northern blot analysis. Through the cDNA sequencing, as well as comparing them to genes published using the NCBI BLAST program, we identified the sequence of the clone-1 that is up-regulated by the treatment of DFO. It is identical to the human insulin-like growth factor binding protein-1 (IGFBP-1). This suggests that the IGFBP-1 gene in the HepG2 cell is up-regulated by an iron depletion condition. Also, the expression of the clone-3 and -4 is up-regulated by FAC treatment and their eDNA sequences are identical to the human ferritin-fight chain and human NADH-dehydrogenase, respectively. However, the sequence of the clone-2 has no significant homology to any other known gene. Therefore, we suggest that changes of the cellular iron level in the HepG2 cell affects the transcription of cellular genes. This includes human IGFBP-1, ferritin-fight chain, and NADH-dehydrogenase. Regulation of these gene expressions may have an important role in cellular functions that are related to cellular iron metabolism.

  • PDF

Attenuation of Oxidative Stress-Induced HepG2 Cellular Damage by Cirsiumjaponicum Root Extract (HepG2 세포에서 대계 추출물에 의한 산화적 스트레스 유발 세포 손상의 억제)

  • Da Jung Ha;Seohwi Kim;Byunwoo Son;Myungho Jin;Sungwoo Cho;Sang Hoon Hong;Yung Hyun Choi;Sang Eun Park
    • Journal of Life Science
    • /
    • v.33 no.12
    • /
    • pp.1002-1014
    • /
    • 2023
  • The root of Cirsium japonicum var. maackii (Maxim.) has long been used in traditional medicine to prevent the onset and progression of various diseases and has been reported to exert a wide range of physiological effects, including antioxidant activity. However, research on its effects on hepatocytes remains scarce. This study used the human hepatocellular carcinoma HepG2 cell line to investigate the antioxidant activity of ethanol extract of C. japonicum root (EECJ) on hepatocytes. Hydrogen peroxide (H2O2) was used to mimic oxidative stress. The results showed that EECJ significantly reverted the decrease in cell viability and suppressed the release of lactate dehydrogenase in HepG2 cells treated with H2O2. Moreover, an analysis of changes in cell morphology, flow cytometry, and microtubule-associated protein light chain 3 (LC3) expression showed that EECJ significantly inhibited HepG2 cell autophagy induced by H2O2. Furthermore, it attenuated H2O2-induced apoptosis and cell cycle disruption by blocking intracellular reactive oxygen species and mitochondrial superoxide production, indicating strong antioxidant activity. EECJ also restored the decreased levels of intracellular glutathione (GSH) and enhanced the expression and activity of superoxide dismutase and GSH peroxidase in H2O2-treated HepG2 cells. Although an analysis of the components contained in EECJ and in vivo validation using animal models are needed, these findings indicate that EECJ is a promising candidate for the prevention and treatment of oxidative stress-induced liver cell damage.