Browse > Article
http://dx.doi.org/10.7314/APJCP.2014.15.18.7785

Biological Screening of Novel Derivatives of Valproic Acid for Anticancer and Antiangiogenic Properties  

Farooq, Muhammad (Bioproducts Research Chair, Department of Zoology, King Saud University)
El-Faham, Ayman (Department of Chemistry, College of Science, King Saud University)
Khattab, Sherine N. (Department of Chemistry, Faculty of Science, Alexandria University)
Elkayal, Ahmed M. (Department of Chemistry, Faculty of Science, Alexandria University)
Ibrahim, Mahmoud F. (Department of Chemistry, Faculty of Science, Alexandria University)
Taha, Nael Abu (Bioproducts Research Chair, Department of Zoology, King Saud University)
Baabbad, Almohannad (Bioproducts Research Chair, Department of Zoology, King Saud University)
Wadaan, Mohammad A.M. (Bioproducts Research Chair, Department of Zoology, King Saud University)
Hamed, Ezaat A. (Department of Chemistry, Faculty of Science, Alexandria University)
Publication Information
Asian Pacific Journal of Cancer Prevention / v.15, no.18, 2014 , pp. 7785-7792 More about this Journal
Abstract
Background: Valproic acid (VPA) is a potent anticancer and antiangiogenic agent. However, design and synthesis of chemical derivatives with improved antiangiogenic and anticancer activities are still necessary. In this study a library of novel derivatives of VPA was synthesized and tested. Methods: A human liver cancer cell line (HepG2) and a human normal embryonic kidney cell line (HEK 293) were exposed to various concentrations of VPA derivatives for 24 hours and cell viability was checked by MTT colorimetric assay. Anti-angiogenic properties were evaluated in transgenic zebrafish embryos. Results: N-valproylglycine derivatives suppressed survival almost 70% (p value 0.001) in HepG2 cells but only 10-12% in HEK 293 cells (p value 0.133). They also suppressed angiogenic blood vessel formation by 80% when used between $2-20{\mu}M$ in zebrafish embryos. Valproic acid hydrazides showed moderate level of anticancer activity by affecting 30-50% (p value 0.001) of cell viability in HepG2 cells and 8-10% in HEK293 cells (p value 0.034). Conclusion: The majority of compounds in this study showed potent and stronger antiangiogenic and anticancer activity than VPA. They proved selectively toxic to cancer cells and safer for normal cells. Moreover, these compounds inhibited developmental angiogenesis in zebrafish embryos. Based on the fact that liver is a highly vascularized organ, in case of liver carcinoma these compounds have the potential to target the pathological angiogenesis and could be an effective strategy to treat hepatocellular carcinoma.
Keywords
Valproic acid derivatives; hydrazides; glycine; hepatocellular carcinoma cells; angiogenesis;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Isogai S, Lawson ND, Torrealday S, et al (2003). Angiogenic network formation in the developing vertebrate trunk. Development, 130, 5281-90.   DOI   ScienceOn
2 Jaffe EA, Nachman RL, Becker CG, Minick CR (1973). Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest, 52, 2745-56.   DOI   ScienceOn
3 Johnson NM, Farr GH, 3rd, Maves L (2013). The HDAC Inhibitor TSA Ameliorates a Zebrafish Model of Duchenne Muscular Dystrophy. PLoS Curr, 5, 1-15.
4 Kaiser M, Zavrski I, Sterz J, et al (2006). The effects of the histone deacetylase inhibitor valproic acid on cell cycle, growth suppression and apoptosis in multiple myeloma. Haematologica, 91, 248-51.
5 Kawagoe R, Kawagoe H, Sano K (2002). Valproic acid induces apoptosis in human leukemia cells by stimulating both caspase-dependent and -independent apoptotic signaling pathways. Leuk Res, 26, 495-502.   DOI   ScienceOn
6 Kimmel CB, Ballard WW, Kimmel SR, et al (1995). Stages of embryonic development of the zebrafish. Dev Dyn, 203, 253-310.   DOI   ScienceOn
7 Kitazoe K, Abe M, Hiasa M, et al (2009). Valproic acid exerts anti-tumor as well as anti-angiogenic effects on myeloma. Int J Hematol, 89, 45-57.   DOI
8 Kostrouchova Mand, Kostrouch Z (2007). Valproic acid, a molecular lead to multiple regulatory pathways. Folia Biol (Praha), 53, 37-49.
9 Kucukguzel SGR S, Kucukguzel I, Kiraz M (1999). S ynhesis and antimycobacterial activity of some coupling products from 4- aminobenzoic acid hydrazones. Eur J Med Chem, 34, 1093-100.   DOI   ScienceOn
10 Lin C, Wu M, Dong J (2012). Quercetin-4'-O-beta-Dglucopyranoside (QODG) inhibits angiogenesis by suppressing VEGFR2-mediated signaling in zebrafish and endothelial cells. PLoS One, 7, 31708.   DOI
11 Littleton R, Mand Hove JR (2013). Zebrafish: a nontraditional model of traditional medicine. J Ethnopharmacol, 145, 677-85.   DOI   ScienceOn
12 Liu CL, Cheng L, Kwok HF, et al (2011a). Bioassay-guided isolation of norviburtinal from the root of Rehmannia glutinosa, exhibited angiogenesis effect in zebrafish embryo model. J Ethnopharmacol, 137, 1323-7.   DOI   ScienceOn
13 Liu Y, Li Y, Xu Y (2011b). Inhibitory effects of novel integrintargeting peptides on angiogenesis activity in HUVEC cells in vitro. Cell Biochem Funct, 29, 429-35.   DOI   ScienceOn
14 Loupy A, Petit A, Hamelin J, et al (1998). New Solvent-Free Organic Synthesis Using Focused Microwaves. Synthesis,, 1213-34.
15 Osuka S, Takano S, Watanabe S, et al (2012). Valproic acid inhibits angiogenesis in vitro and glioma angiogenesis in vivo in the brain. Neurol Med Chir, 52, 186-93.   DOI
16 Machado MC, Bellodi-Privato M, Kubrusly MS, et al (2011). Valproic acid inhibits human hepatocellular cancer cells growth in vitro and in vivo. J Exp Ther Oncol, 9, 85-92.
17 Michaelis M, Michaelis UR, Fleming I, et al (2004). Valproic acid inhibits angiogenesis in vitro and in vivo. Mol Pharmacol, 65, 520-7.   DOI   ScienceOn
18 Molema Gand, Griffioen AW (1998). Rocking the foundations of solid tumor growth by attacking the tumor's blood supply. Immunol Today, 19, 392-4.   DOI   ScienceOn
19 Regan CM (1985). Therapeutic levels of sodium valproate inhibit mitotic indices in cells of neural origin. Brain Res, 347, 394-8.   DOI   ScienceOn
20 Pillai R, Coverdale LE, Dubey G, Martin CC (2004). Histone deacetylase 1 (HDAC-1) required for the normal formation of craniofacial cartilage and pectoral fins of the zebrafish. Dev Dyn, 231, 647-54.   DOI   ScienceOn
21 Rezacova M, Vavrova J, Vokurkova D, Zaskodova D (2006). Effect of valproic acid and antiapoptotic cytokines on differentiation and apoptosis induction of human leukemia cells. Gen Physiol Biophys, 25, 65-79.
22 Rocchi P, Tonelli R, Camerin C, et al (2005). p21Waf1/Cip1 is a common target induced by short-chain fatty acid HDAC inhibitors (valproic acid, tributyrin and sodium butyrate) in neuroblastoma cells. Oncol Rep, 13, 1139-44.
23 Rollas S, Gulerman N, Erdeniz H (2002). Synthesis and antimicrobial activity of some new hydrazones of 4-fluorobenzoic acid hydrazide and 3-acetyl-2, 5-disubstituted-1, 3, 4-oxadiazolines. Farmaco, 57, 171-4.   DOI   ScienceOn
24 Rothgery EFIK-O (2005). Encycl. Chem. Technol. Wiley.
25 Schmidt EW (2001). Hydrazine and Its Derivatives: Preparation, Properties, Applications, Wiley.
26 Terriente Jand, Pujades C (2013). Use of zebrafish embryos for small molecule screening related to cancer. Dev Dyn, 242, 97-107.   DOI   ScienceOn
27 Shan Z, Feng-Nian R, Jie G, Ting Z (2012). Effects of valproic acid on proliferation, apoptosis, angiogenesis and metastasis of ovarian cancer in vitro and in vivo. Asian Pac J Cancer Prev, 13, 3977-82.   과학기술학회마을   DOI   ScienceOn
28 Tse HY, Hui MN, Li L, et al (2012). Angiogenic efficacy of simplified 2-herb formula (NF3) in zebrafish embryos in vivo and rat aortic ring in vitro. J Ethnopharmacol, 139, 447-53.   DOI   ScienceOn
29 Staton CA, Reed MW, Brown NJ (2009). A critical analysis of current in vitro and in vivo angiogenesis assays. Int J Exp Pathol, 90, 195-221.   DOI   ScienceOn
30 Teo E, Kand Fock KM (2001). Hepatocellular carcinoma: an Asian perspective. Dig Dis, 19, 263-8.   DOI   ScienceOn
31 Wang CK, Yu XD, Li Q, et al (2013). Chloroquine and valproic acid combined treatment in vitro has enhanced cytotoxicity in an osteosarcoma cell line. Asian Pac J Cancer Prev, 14, 4651-4.   과학기술학회마을   DOI   ScienceOn
32 Wu X, Zhong H, Song J, et al (2006). Mycophenolic acid is a potent inhibitor of angiogenesis. Arterioscler Thromb Vasc Biol, 26, 2414-6.   DOI   ScienceOn
33 Yamaguchi M, Tonou-Fujimori N, Komori A, et al (2005). Histone deacetylase 1 regulates retinal neurogenesis in zebrafish by suppressing Wnt and Notch signaling pathways. Development, 132, 3027-43.   DOI   ScienceOn
34 Yang JH, Hu J, Wan L, Chen LJ (2014). Barbigerone inhibits tumor angiogenesis, growth and metastasis in melanoma. Asian Pac J Cancer Prev, 15, 167-74.   과학기술학회마을   DOI   ScienceOn
35 Yeh CH, Liao YF, Chang CY, et al (2012). Caffeine treatment disturbs the angiogenesis of zebrafish embryos. Drug Chem Toxicol, 35, 361-5.   DOI   ScienceOn
36 Amatruda J, Fand Patton EE (2008). Genetic models of cancer in zebrafish. Int Rev Cell Mol Biol, 271, 1-34.   DOI   ScienceOn
37 Zgouras D, Becker U, Loitsch S, Stein J (2004). Modulation of angiogenesis-related protein synthesis by valproic acid. Biochem Biophys Res Commun, 316, 693-7.   DOI   ScienceOn
38 Zhao XC, Dou GR, Wang L, et al (2013). Inhibition of tumor angiogenesis and tumor growth by the DSL domain of human Delta-like 1 targeted to vascular endothelial cells. Neoplasia, 15, 815-25.   DOI
39 Zhong ZF, Hoi PM, Wu GS, et al (2012). Anti-angiogenic effect of furanodiene on HUVECs in vitro and on zebrafish in vivo. J Ethnopharmacol, 141, 721-7.   DOI   ScienceOn
40 Abaza MS, Bahman AM, Al-Attiyah RJ (2014). Valproic acid, an anti-epileptic drug and a histone deacetylase inhibitor, in combination with proteasome inhibitors exerts antiproliferative, pro-apoptotic and chemosensitizing effects in human colorectal cancer cells: Underlying molecular mechanisms. Int J Mol Med, 34, 513-32.
41 Cao Y, Semanchik N, Lee SH, et al (2009). Chemical modifier screen identifies HDAC inhibitors as suppressors of PKD models. Proc Natl Acad Sci USA, 106, 21819-24.   DOI   ScienceOn
42 Blaheta RA, Michaelis M, Driever PH, Cinatl J, Jr (2005). Evolving anticancer drug valproic acid: insights into the mechanism and clinical studies. Med Res Rev, 25, 383-97.   DOI   ScienceOn
43 Bohni N, Cordero-Maldonado ML, Maes J, et al (2013). Integration of Microfractionation, qNMR and zebrafish screening for the in vivo bioassay-guided isolation and quantitative bioactivity analysis of natural products. PLoS One, 8, 64006.   DOI
44 Chan JandMably JD (2011). Dissection of cardiovascular development and disease pathways in zebrafish. Prog Mol Biol Transl Sci, 100, 111-53.   DOI   ScienceOn
45 Farooq M, Sulochana KN, Pan X, et al (2008). Histone deacetylase 3 (hdac3) is specifically required for liver development in zebrafish. Dev Biol, 317, 336-53.   DOI   ScienceOn
46 Crawford AD, Liekens S, Kamuhabwa AR, et al (2011). Zebrafish bioassay-guided natural product discovery: isolation of angiogenesis inhibitors from East African medicinal plants. PLoS One, 6, 14694.   DOI   ScienceOn
47 Dasari B, Jogula S, Borhade R, et al (2013). Macrocyclic glycohybrid toolbox identifies novel antiangiogenesis agents from zebrafish assay. Org Lett, 15, 432-5.   DOI   ScienceOn
48 Ellertsdottir E, Lenard A, Blum Y, et al (2010). Vascular morphogenesis in the zebrafish embryo. Dev Biol, 341, 56-65.   DOI   ScienceOn
49 Ganai SA, Malli Kalladi S, Mahadevan V (2014). HDAC inhibition through valproic acid modulates the methylation profiles in human embryonic kidney cells. J Biomol Struct Dyn, [Epub ahead of print].
50 Huang ZJ, Zhao Y, Luo WY, et al (2013). Targeting the vasculature of colorectal carcinoma with a fused protein of (RGD) (3)-tTF. Scientific World Journal, 2013, 637086.
51 Gong C, Deng S, Wu Q, et al (2013). Improving antiangiogenesis and anti-tumor activity of curcumin by biodegradable polymeric micelles. Biomaterials, 34, 1413-32.   DOI   ScienceOn
52 Hollenbach M, Stoll SJ, Jorgens K, et al (2013). Different regulation of physiological and tumor angiogenesis in zebrafish by protein kinase D1 (PKD1). PLoS One, 8, 68033.   DOI
53 Huang H, Tand Zon LI (2008). Regulation of stem cells in the zebra fish hematopoietic system. Cold Spring Harb Symp Quant Biol, 73, 111-8.   DOI   ScienceOn
54 Ingham PW (2009). The power of the zebrafish for disease analysis. Hum Mol Genet, 18, 107-12.   DOI   ScienceOn
55 Kucukguzel SG, Oruc EE, Rollas S, et al (2002). Synthesis, characterisation and biological activity of novel 4-thiazolidinones, 1, 3, 4-oxadiazoles and some related compounds. Eur J Med Chem, 37, 197-206.   DOI   ScienceOn
56 Can A, Dogan E, Bayoglu IV, et al (2014). Multicenter epidemiologic study on hepatocellular carcinoma in Turkey. Asian Pac J Cancer Prev, 15, 2923-7.   DOI   ScienceOn