• Title/Summary/Keyword: Hematopoietic differentiation

Search Result 102, Processing Time 0.025 seconds

Toxicity and Biomedical Imaging of Fluorescence-Conjugated Nanoparticles in Hematopoietic Progenitor Cells

  • Min, Gye-Sik;Kim, Dong-Ku
    • Reproductive and Developmental Biology
    • /
    • v.35 no.4
    • /
    • pp.503-510
    • /
    • 2011
  • Cellular uptake of nanoparticles for stem cell labeling and tracking is a critical technique for biomedical therapeutic applications. However, current techniques suffer from low intracellular labeling efficiency and cytotoxic effects, which has led to great interest in the development of a new labeling strategy. Using silica-coated nanoparticles conjugated with rhodamine B isothiocyanate (RITC) (SR), we tested the cellular uptake efficiency, biocompatibility, proliferation or differentiation ability with murine bone marrow derived hematopoietic stem/progenitor cells. The bone marrow hematopoietic cells showed efficient uptake with SR with dose or time dependent manner and also provided a higher uptake on hematopoietic stem/progenitor cells. Biocompatibility tests revealed that the SR had no deleterious effects on cell cytotoxicity, proliferation, or multi-differentiation capacities in vitro and in vivo. SR nanoparticles are advantageous over traditional labeling techniques as they possess a high level of cellular internalization without limiting the biofunctionality of the cells. Therefore, SR provides a useful alternative for gene or drug delivery into hematopoietic stem/progenitor cells for basic research and clinical applications.

Protein Expression Analysis in Hematopoietic Stem Cells during Osteopontin-Induced Differentiation of Natural Killer Cells

  • Kim, Mi-Sun;Bae, Kil-Soo;Kim, Hye-Jin;Yoon, Suk-Ran;Oh, Doo-Byung;Hwang, Kwang-Woo;Jun, Woo-Jin;Shim, Sang-In;Kim, Kwang-Dong;Jung, Yong-Woo;Park, So-Young;Kwon, Ki-Sun;Choi, In-Pyo;Chung, Jin-Woong
    • Biomolecules & Therapeutics
    • /
    • v.19 no.2
    • /
    • pp.206-210
    • /
    • 2011
  • Natural Killer (NK) cells are the lymphocytes that are derived from hematopoietic stem cells, developed in the bone marrow from hematopoietic stem cells (HSC) by sequential acquisition of functional surface receptors, and express the repertoire of inhibitory and activating receptors. Recently, Osteopontin (OPN) has been identified as a critical factor for differentiation of natural killer cells. However, the detailed mechanism of OPN-induced NK differentiation has been still to be elucidated. Here, we determined the signaling pathway and possible receptor for OPN in NK differentiation. OPN induced expression of Bcl-2 and activation of Erk kinase. Inhibition of Erk pathway decreased the effect of OPN on NK differentiation. In addition, the expression of integrin ${\alpha}9$ was significantly increased by OPN during NK differentiation, suggesting the possible role of a major signaling molecule for OPN- induced NK differentiation.

Frequent Changes of 3' UTR Sequences in the Genes Expressed During Hematopoietic Differentiation Implicates the Importance of 3' UTR in Regulation of Gene Function (조혈세포의 분화과정에서 발현되는 유전자의 3‘ UTR 염기서열의 변화가 유전자 기능의 조절에 미치는 영향에 대한 연구)

  • Lee Sanggyu
    • YAKHAK HOEJI
    • /
    • v.49 no.3
    • /
    • pp.205-211
    • /
    • 2005
  • The 3' UTR (3' untranslated region) plays important roles in controlling gene expression through regulating 3' polyadenylation, mRNA export, subcellular localization, translational efficiency, and mRNA stability. Changes in the 3' UTR sequence in an expressed transcript can result in functional changes of the genes that are expressed in pathological conditions compared with those genes expressed in normal physiologic conditions. A genome-wide survey of 3' UTR variation was performed for the genes expressed during hematopoietic differentiation from CD34+ stem/progenitor cells to CD 15 + myeloid progenitor cells. Wide-spread differential usage of the 3' UTR was observed from the genes expressed during this cellular transition. This study implies that the 3' UTR can be a highly coordinated region for post-transcriptional regulation of the function of expressed genes.

Different Potential of Hematopoietic Differentiation in Two Distinct Mouse Embryonic Stem Cells (두 개의 다른 마우스 배아줄기세포의 차별적인 조혈세포 분화능)

  • Kim, Jin-Sook;Kang, Ho-Bum;Song, Jee-Yeon;Oh, Goo-Taeg;Nam, Ki-Hoan;Lee, Young-Hee
    • Development and Reproduction
    • /
    • v.9 no.2
    • /
    • pp.105-114
    • /
    • 2005
  • Embryonic stem(ES) cells have tremendous potential as a cell source for cell-based therapies. Realization of that potential will depend on our ability to understand and manipulate the factors that influence cell fate decision and to develop methods for getting enough cell numbers for clinical applications. Hematopoiesis has been widely studied, and hematopoietic differentiation from ES cells is a good model to study lineage commitment. In this study, we investigated stemness and compared the efficiency of hematopoietic differentiation using two different mouse embryonic stem cell lines TC-1 and B6-1. Although the two cell lines showed known stem cell properties with minor differences, the embryoid body formation efficiency in methylcellulose was much higher in TC-1 than B6-1. When measured potentials of hematopoietic differentiation using functional(colony-forming cell) and phenotypic(specific marker expression) assays, we found that TC-1 can differentiate into hematopoietic cells in methylcellulose culture but B6-1 cannot. These results imply that we can improve the efficiency of hematopoietic cell differentiation by selection of proper cell lines and this may be also applied in the differentiation of human embryonic stem cells.

  • PDF

Mesenchymal stem cells and osteogenesis

  • Jung, Cho-Rok;Kiran, Kondabagil R.;Kwon, Byoung S.
    • IMMUNE NETWORK
    • /
    • v.1 no.3
    • /
    • pp.179-186
    • /
    • 2001
  • Bone marrow stroma is a complex tissue encompassing a number of cell types and supports hematopiesis, differentiation of erythreid, nyel and lymphoid lineages, and also maintains undifferentiated hematopoietic stem cells. Marrow-derived stem cells were composed of two populations, namely, hematopoietic stem cells that can differentiate into blood elements and mesenchymal stem cells that can give rise to connective tissues such as bone, cartilage, muscle, tendon, adipose and stroma. Differentiation requires environmental factors and unique intracellular signaling. For example, $TGF-{\beta}$ or BMP2 induces osteoblastic differentiation of mesenchymal stem are very exciting. However, the intrinsic controls involved in differentiation of stem cells are yet to be understood properly in order to exploit the same. This review presents an overview of the recent developments made in mesenchymal stem cell research with respect to osteogenesis.

  • PDF

Development of Natural Killer Cells from Hematopoietic Stem Cells

  • Yoon, Suk Ran;Chung, Jin Woong;Choi, Inpyo
    • Molecules and Cells
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2007
  • Natural killer (NK) cells play a crucial role in innate immune system and tumor surveillance. NK cells are derived from $CD34^+$hematopoietic stem cells and undergo differentiation via precursor NK cells in bone marrow (BM) through sequential acquisition of functional surface receptors. During differentiation of NK cells, many factors are involved including cytokines, membrane factors and transcription factors as well as microenvironment of BM. NK cells express their own repertoire of receptors including activating and inhibitory receptors that bind to major histocompatibility complex (MHC) class I or class I-related molecules. The balance between activating and inhibitory receptors determines the function of NK cells to kill targets. Binding of NK cell inhibitory receptors to their MHC class I-ligand renders the target cells to be protected from NK cell-mediated cytotoxicity. Thus, NK cells are able to discriminate self from non-self through MHC class I-binding inhibitory receptor. Using intrinsic properties of NK cells, NK cells are emerging to apply as therapeutic agents against many types of cancers. Recently, NK cell alloactivity has also been exploited in killer cell immunoglobulin-like receptor mismatched haploidentical stem cell transplantation to reduce the rate of relapse and graft versus host disease. In this review, we discuss the basic mechanisms of NK cell differentiation, diversity of NK cell receptors, and clinical applications of NK cells for anti-cancer immunotherapy.

Iron Homeostasis Controls Myeloid Blood Cell Differentiation in Drosophila

  • Yoon, Sunggyu;Cho, Bumsik;Shin, Mingyu;Koranteng, Ferdinand;Cha, Nuri;Shim, Jiwon
    • Molecules and Cells
    • /
    • v.40 no.12
    • /
    • pp.976-985
    • /
    • 2017
  • Iron is an essential divalent ion for aerobic life. Life has evolved to maintain iron homeostasis for normal cellular and physiological functions and therefore imbalances in iron levels exert a wide range of consequences. Responses to iron dysregulation in blood development, however, remain elusive. Here, we found that iron homeostasis is critical for differentiation of Drosophila blood cells in the larval hematopoietic organ, called the lymph gland. Supplementation of an iron chelator, bathophenanthroline disulfate (BPS) results in an excessive differentiation of the crystal cell in the lymph gland. This phenotype is recapitulated by loss of Fer1HCH in the intestine, indicating that reduced levels of systemic iron enhances crystal cell differentiation. Detailed analysis of Fer1HCH-tagged-GFP revealed that Fer1HCH is also expressed in the hematopoietic systems. Lastly, blocking Fer1HCH expression in the mature blood cells showed marked increase in the blood differentiation of both crystal cells and plasmatocytes. Thus, our work suggests a relevance of systemic and local iron homeostasis in blood differentiation, prompting further investigation of molecular mechanisms underlying iron regulation and cell fate determination in the hematopoietic system.

Depletion of Janus kinase-2 promotes neuronal differentiation of mouse embryonic stem cells

  • Oh, Mihee;Kim, Sun Young;Byun, Jeong-Su;Lee, Seonha;Kim, Won-Kon;Oh, Kyoung-Jin;Lee, Eun-Woo;Bae, Kwang-Hee;Lee, Sang Chul;Han, Baek-Soo
    • BMB Reports
    • /
    • v.54 no.12
    • /
    • pp.626-631
    • /
    • 2021
  • Janus kinase 2 (JAK2), a non-receptor tyrosine kinase, is a critical component of cytokine and growth factor signaling pathways regulating hematopoietic cell proliferation. JAK2 mutations are associated with multiple myeloproliferative neoplasms. Although physiological and pathological functions of JAK2 in hematopoietic tissues are well-known, such functions of JAK2 in the nervous system are not well studied yet. The present study demonstrated that JAK2 could negatively regulate neuronal differentiation of mouse embryonic stem cells (ESCs). Depletion of JAK2 stimulated neuronal differentiation of mouse ESCs and activated glycogen synthase kinase 3β, Fyn, and cyclin-dependent kinase 5. Knockdown of JAK2 resulted in accumulation of GTP-bound Rac1, a Rho GTPase implicated in the regulation of cytoskeletal dynamics. These findings suggest that JAK2 might negatively regulate neuronal differentiation by suppressing the GSK-3β/Fyn/CDK5 signaling pathway responsible for morphological maturation.

Inhibition of MicroRNA-221 and 222 Enhances Hematopoietic Differentiation from Human Pluripotent Stem Cells via c-KIT Upregulation

  • Lee, Ji Yoon;Kim, MyungJoo;Heo, Hye-Ryeon;Ha, Kwon-Soo;Han, Eun-Taek;Park, Won Sun;Yang, Se-Ran;Hong, Seok-Ho
    • Molecules and Cells
    • /
    • v.41 no.11
    • /
    • pp.971-978
    • /
    • 2018
  • The stem cell factor (SCF)/c-KIT axis plays an important role in the hematopoietic differentiation of human pluripotent stem cells (hPSCs), but its regulatory mechanisms involving microRNAs (miRs) are not fully elucidated. Here, we demonstrated that supplementation with SCF increases the hematopoietic differentiation of hPSCs via the interaction with its receptor tyrosine kinase c-KIT, which is modulated by miR-221 and miR-222. c-KIT is comparably expressed in undifferentiated human embryonic and induced pluripotent stem cells. The inhibition of SCF signaling via treatment with a c-KIT antagonist (imatinib) during hPSC-derived hematopoiesis resulted in reductions in the yield and multi-lineage potential of hematopoietic progenitors. We found that the transcript levels of miR-221 and miR-222 targeting c-KIT were significantly lower in the pluripotent state than they were in terminally differentiated somatic cells. Furthermore, suppression of miR-221 and miR-222 in undifferentiated hPSC cultures induced more hematopoiesis by increasing c-KIT expression. Collectively, our data implied that the modulation of c-KIT by miRs may provide further potential strategies to expedite the generation of functional blood cells for therapeutic approaches and the study of the cellular machinery related to hematologic malignant diseases such as leukemia.

Forced Expression of HoxB4 Enhances Hematopoietic Differentiation by Human Embryonic Stem Cells

  • Lee, Gab Sang;Kim, Byung Soo;Sheih, Jae-hung;Moore, Malcolm AS
    • Molecules and Cells
    • /
    • v.25 no.4
    • /
    • pp.487-493
    • /
    • 2008
  • HoxB4 has been shown to enhance hematopoietic engraftment by hematopoietic stem cells (HSC) from differentiating mouse embryonic stem cell (mESC) cultures. Here we examined the effect of ectopic expression of HoxB4 in differentiated human embryonic stem cells (hESCs). Stable HoxB4-expressing hESCs were established by lentiviral transduction, and the forced expression of HoxB4 did not affect stem cell features. HoxB4-expressing hESC-derived CD34+ cells generated higher numbers of erythroid and blast-like colonies than controls. The number of CD34+ cells increased but CD45+ and KDR+ cell numbers were not significantly affected. When the hESC derived CD34+ cells were transplanted into $NOD/SCID{\beta}2m-/-$ mice, the ectopic expression of HoxB4 did not alter their repopulating capacity. Our findings show that overexpression of HoxB4 in differentiating hESCs increases hematopoietic colony formation and hematopoietic cell formation in vitro, but does not affect in vivo repopulation in adult mice hosts.