• Title/Summary/Keyword: Hematopoietic cells

Search Result 326, Processing Time 0.029 seconds

Identification of Novel Mutations In Adenosine Deaminase Gene In Korean Leukemia Patients (한국인 백혈병 환자에서 아데노신 디아미나제 유전자의 새로운 변이의 확인)

  • Park, Ki-Ho
    • Journal of Life Science
    • /
    • v.20 no.3
    • /
    • pp.453-456
    • /
    • 2010
  • Leukemia is the abnormal increase of hematopoietic progenitor cells in tissues, resulting in anemia, increased susceptibility to infection and impaired blood clotting. The adenosine deaminase (ADA) gene is an important druggable target for the treatment of leukemia patients. Genetic and molecular analyses were performed to determine the effects of ADA gene mutations in 20 leukemia patients in the Korean population. To analyze the relationship between genotype and phenotype, the ADA genomic DNAs - including 1,092 bp of 12 exons and partial intron sequences flanking each exon - were sequenced and compared. In this study, the known mutations in other diseases, more than 50 mutations already reported in patients with severe combined immunodeficiency disease (SCID) and autism, were not found, but two novel mutations in leukemia patients were discovered. They include one nonsense mutation (A>C at nt position 478, F101F) and one missense mutation (G>A at nt position 778, E260K). One missense mutation (G>A at nt position 22, D8Y) was also detected in 20 normal control patients (allelic frequency of 7.5%). Interestingly, subjects in the Korean population retained 2 bp insertion at the intron 6 (IVS6-52insGC), something that has never been shown in other populations. The genetic study to find out the correlation between the mutant alleles and leukemia patients revealed no association statistically (p>0.05). The mutation found in leukemia needs further study to determine its possibility as a molecular marker for the diagnosis of leukemia.

Characterization of CTL Clones Specific for Single Antigen, H60 Minor Histocompatibility Antigen

  • Jeon, Ji-Yeong;Jung, Kyung-Min;Chang, Jun;Choi, Eun-Young
    • IMMUNE NETWORK
    • /
    • v.11 no.2
    • /
    • pp.100-106
    • /
    • 2011
  • Background: Disparities of Minor H antigens can induce graft rejection after MHC-matched transplantation. H60 has been characterized as a dominant antigen expressed on hematopoietic cells and considered to be an ideal model antigen for study on graft-versus-leukemia effect. Methods: Splenocytes from C57BL/6 mice immunized with H60 congenic splenocytes were used for establishment of H60-specific CTL clones. Then the clones were characterized for proliferation capacity and cytotoxicity after stimulation with H60. Clone #14, #15, and #23 were tested for the TCR binding avidity to H60-peptide/$H-2K^b$ and analyzed for TCR sequences. Results: H60-specific CTL clones showed different levels of proliferation capacity and cytotoxic activity to H60-stimulation. Clones #14, #15, and #23 showed high proliferation activity, high cytotoxicity, and low activities on both aspects, respectively, and have TCRs with different binding avidities to H60-peptide/$H-2K^b$ with $t_{1/2}$ values of 4.87, 6.92, and 13.03 minutes, respectively. The TCR usages were $V{\alpha}12D-3-01+J{\alpha}11-01$ and $V{\beta}12-1-01+D{\beta}1-01+J2-7-01$ for clone #14, $V{\alpha}13D-1-02+J{\alpha}34-02$ and $V{\beta}13-1-02+D{\beta}2-01+J{\beta}2-7-01$ for clone #15, and $V{\alpha}16D+J{\alpha}45-01$ and $V{\beta}12-1-01+D{\beta}1-01+J{\beta}2-5-01$ for clone #23. Conclusion: The results will be useful for modeling GVL and generation TCR transgenic mouse.

EFFECTS OF MACROPHAGE INFLAMMATORY $PROTEIN-1{\alpha}$ON THE T CELL PROLIFERATION AND THE EXPRESSION OF CD4 AND CD8 (Macrophage Inflammatory Protein $1{\alpha}$가 T세포성장 및 CD4, CD8 발현에 미치는 영향)

  • Choi, Jong-Sun;Kim, Oh-Whan
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.18 no.1
    • /
    • pp.153-163
    • /
    • 1996
  • Macrophage inflammatory protein $(MIP)-1{\alpha}$ is a cytokine which produces wide range of bioactivities such as proinflammatory, immunomodulatory, and hematopoietic modulatory actions. To determine whether $MIP-1{\alpha}$ acts as a negative regulator on the functions of lymphocyte, $[^3H]$-thymidine incorporation test and flow cytometric analysis were performed by using human tonsil T cell, human peripheral blood T cell, and murine cytolytic T lymphocyte (CTL) line CTLL-2, The results were as follow. 1. When human tonsil T lymphocytes were stimulated with anti-CD3 monoclonal antibody (mAb), rate of T cell proliferation was about four times increased. 200ng/ml of $MIP-1{\alpha}$ inhibited anti-CD3 mAb-mediated T cell growth as much as 60% (P<0.05). 2. The suppression of human peripheral T cell proliferation produced by $MIP-1{\alpha}$ was dramatic, but variable among T cells derived from different individuals $(40%{\sim}90%)$. 3. $MIP-1{\alpha}$inhibited the proliferation of murine CTL line CTLL-2 as much as 75%(P<0.001). 4. When the $MIP-1{\alpha}$ was added to human peripheral T cell, cell proporation of $CD4^+$ helper T cell and $CD8^+$ CTL were not noticeably affected. The expression level of CD4, not of Cd8, however, was down regulated by $MIP-1{\alpha}$ treatment $(27%{\sim}82%)$.

  • PDF

Radioprotective Potential of Panax ginseng: Current Status and Future Prospectives (고려인삼의 방사선 방어효과에 대한 연구현황과 전망)

  • Nam, Ki-Yeul;Park, Jong-Dae;Choi, Jae-Eul
    • Korean Journal of Medicinal Crop Science
    • /
    • v.19 no.4
    • /
    • pp.287-299
    • /
    • 2011
  • Pharmacological effects of Panax ginseng have been demonstrated in cardiovascular system, endocrine secretion and immune system, together with antitumor, anti-stress and anti-oxidant activities. Modern scientific data show protective effect of ginseng against bone marrow cell death, increased survival rate of experimental animals, recovery of hematopoietic injury, immunopotentiation, reduction of damaged intestinal epithelial cells, inhibition of mutagenesis and effective protection against testicular damages, caused by radiation exposure. And also, ginseng acts in indirect fashion to protect radical processes by inhibition of initiation of free radical processes and thus reduces the radiation damages. The research has made much progress, but still insufficient to fully uncover the action mechanism of ginseng components on the molecule level. This review provides the usefulness of natural product, showing no toxic effects, as an radioprotective agent. Furthermore, the further clinical trials on radioprotection of ginseng need to be highly done to clarify its scientific application. The effective components of ginseng has been known as ginsenosides. Considering that each of these ginsenosides has pharmacological effect, it seems likely that non-saponin components might have radioprotective effects superior to those of ginsenosides, suggesting its active ingredients to be non-saponin series. These results also show that the combined effects of saponin and non-saponin components play an important role in the radioprotective effects of ginseng.

The Protective Effect of Selenium on Radiation in Rat (흰쥐에 있어 방사선에 대한 셀레늄의 보호효과)

  • Son, Eun-Joo;Ryu, Eun-soon
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.3
    • /
    • pp.439-444
    • /
    • 2019
  • In this study, the radiation protection effects of selenium, known as a powerful antioxidant, were studied. After 14 days of oral injection of selenium into the rat, a full body irradiation of 10 Gy was carried out. And after 1 day, 3.5 day, 7 day and 21 day, we observed blood cell components and superoxide dismutase(SOD) and small intestine changes. Compared to irradiation groups, there was a significant protection effect of reducing the hematopoietic immune system damage in the irradiated group after selenium administration(p<0.05). Then, selenium is a valid ingredient that increases the activity of the superoxide Dismutase(SOD), and it is confirmed that it has an effect of inhibiting apoptosis expression of small intestinal cells by irradiation. Based on these results, selenium is considered to be an essential ingredient for protecting living things from radiation.

Physiological Roles of Phospholipase Cγ and Its Mutations in Human Disease (Phospholipase Cγ의 생리적 기능과 질병과 연관된 돌연변이)

  • Jang, Hyun-Jun;Choi, Jang Hyun;Chang, Jong-Soo
    • Journal of Life Science
    • /
    • v.30 no.9
    • /
    • pp.826-833
    • /
    • 2020
  • Phospholipase C gamma (PLCγ) has critical roles in receptor tyrosine kinase- and non-receptor tyrosine kinase-mediated cellular signaling relating to the hydrolysis of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] to produce inositol 1,4,5 trisphosphate (IP3) and diacylglycerol (DAG), which promote protein kinase C (PKC) and Ca2+ signaling to their downstream cellular targets. PLCγ has two isozymes called PLCγ1 and PLCγ2, which control cell growth and differentiation. In addition to catalytically active X- and Y-domains, both isotypes contain two Src homology 2 (SH2) domains and an SH3 domain for protein-protein interaction when the cells are activated by ligand stimulation. PLCγ also contains two pleckstrin homology (PH) domains for membrane-associated phosphoinositide binding and protein-protein interactions. While PLCγ1 is widely expressed and appears to regulate intracellular signaling in many tissues, PLCγ2 expression is restricted to cells of hematopoietic systems and seems to play a role in the regulation of immune response. A distinct mechanism for PLCγ activation is linked to an increase in phosphorylation of specific tyrosine residue, Y783. Recent studies have demonstrated that PLCγ mutations are closely related to cancer, immune disease, and brain disorders. Our review focused on the physiological roles of PLCγ by means of its structure and enzyme activity and the pathological functions of PLCγ via mutational analysis obtained from various human diseases and PLCγ knockout mice.

Development of monoclonal antibodies against viral hemorrhagic septicemia virus (VHSV, genotype IVa), the causative agent of VHS (VHS (viral hemorrhagic septicemia)의 원인병원체인 VHSV (genotype IVa)에 대한 단클론 항체 개발)

  • Kong, Kyoung-Hui;Oh, Myung-Joo;Jang, Min-Seok;Kim, Choon-Sup;Kim, Wi-Sik
    • Journal of fish pathology
    • /
    • v.32 no.2
    • /
    • pp.59-67
    • /
    • 2019
  • We developed and subsequently characterized mouse antibodies (MAbs) against viral hemorrhagic septicemia virus (VHSV, genotype IVa), the causative agent of VHS. Five hybridoma clones secreting MAbs against VHSV were established. The MAbs recognized the glycoprotein (MAbs 2C10, 18H4, 23H6, and 30B7) and nucleocapsid protein (15E10) of VHSV by western blot analysis. All five MAbs reacted with VHSV-infected cells and tissue homogenates of VHSV-infected olive flounder (Paralichthys olivaceus) by western blot analysis. Whereas, no reactivity was observed in normal cells and tissue homogenates of normal olive flounder. Moreover, these MAbs reacted with VHSV, but did not react with other fish viruses (infectious hematopoietic necrosis virus, hirame rhabdovirus, spring viraemia of carp virus, infectious pancreatic necrosis virus, marine birnavirus, and nervous necrosis virus) by enzyme linked immunosorbent assay (ELISA). These results indicate that the MAbs are specific to VHSV and can be of value in VHSV detection.

Biological Activity of Recombinant Human Erythropoietin (EPO) In Vivo and In Vitro

  • Park Jong-Ju;Lee Hyen-Gi;Nam In-Suk;Park Hee-Ja;Kim Min-Su;Chung Yun-Hi;Naidansuren Purevjargal;Kang Hye-Young;Lee Poong-Yun;Park Jin-Gi;Seong Hwan-Hoo;Chang Won-Kyong;Kang Myung-Hwa
    • Reproductive and Developmental Biology
    • /
    • v.29 no.2
    • /
    • pp.69-73
    • /
    • 2005
  • The hematopoietic growth factor erythropoietin (EPO) is required for the maintenance, proliferation, and differentiation of the stem cells that produce erythrocytes. To analyse the biological activity of the recombinant human EPO (rec-hEPO), we have cloned the EPO cDNA and genomic DNA and produced rec-hEPO in the CHO cell lines. The growth and differentiation of EPO-dependent human leukemic cell line (F36E) were used to measure cytokine dependency and in vitro bioactivity of rec-hEPO. MIT assay values were increased by survival of F36E cells at 24h or 72h. The hematocrit and RBC values were increased by subcutaneous injection of 20 IU (in mice) and 100IU(in rats) rec-hEPO. Hematocrit values remarkably increased at $13.2\%$ (in mice) and $12.2\%$ (in rats). The pharmacokinetic behavior with injection of 6 IU of rec-hEPO remained detectable after 24 h in all mice tested. The highest peat appeared at 2h after injection. The long half-life of rec-hEPO is likely to confer clinical advantages by allowing less frequent dosing in patients treated for anemia. These data demonstratethat ree-hEPO produced in this study has a potent activity in vivo and in vitro. The results also suggest that biological activity of ree-hEPO could be remarkably enhanced by genetic engineering that affects the potential activity, including mutants with added oligosaccharide chain and designed to produce EPO-EPO fusion protein.

GENE EXPRESSION CHARACTERISTICS OF PUTATIVE PROINFLAMMATORY CYTOKINES AND RECEPTOR MOLECULE CLONING (Putative proinflammatory cytokine유전자의 발현양상과 수용체 분자의 cloing)

  • Oh, Kwi-Ok;Song, Yo-Han;Seo, Young-Seok;Lee, Dong-Whan;Moon, Dae-Hee;Kim, Hyung-Seop
    • Journal of Periodontal and Implant Science
    • /
    • v.24 no.3
    • /
    • pp.472-482
    • /
    • 1994
  • Cytokines expressed specifically in leukocytes subsets and in activated cells, which are involved in chemotaxis and activation of leukocytes, are recently defined as chemokines. Macrophage inflammatory $protein-1{\alpha}(MIP-1{\alpha})$ and $MIP-1{\beta}$ are members of C-C chemokine subfamily which produces wide immunomodulatory, proinflammatory, and hematopoietic modulatory actions. We have studied their gene expression by using Northern blot analysis in various blood cells such as cytolytic T lymphocyte(CTL), helper T lymphocyte(HTL), macrophage, and B lymphocyte. Resting CTL line CTLL-R8 expressed $MIP-1{\alpha}$ mRNA which was downregulated by ConA stimulation. Both of resting and ConA stimulated HTL line Hut78 and Jurkat did not express $MIP-1{\alpha}$ mRNA. There was detectable $MIP-1{\alpha}$ transcript in HTL hybridoma 2B4.11 which was a little upstimulated by ConA stimulation. B cell line 230, and macrophage cell line RAW264.7 and WR19M.1 showed distinct $MIP-1{\alpha}$ message which were induced after LPS stimulation. Expression pattern of $MIP-1{\beta}$ in all cell lines or cell were almost identical to that of $MIP-1{\alpha}$. Also strategies employed to identify and characterize the biological functions was preceded by receptor cloning to trace the shorcut to the final goal of cytokine research. For the cloning of $MIP-1{\alpha}$ receptor(R), we used synthetic oligonucleotides of transmembrane(T) conserved sequences of already cloned human(h) IL-8-R, and performed reverse transcription-polymerase chain reaction(RT-PCR) amplification using murine(m) macrophage cell line mRNA. Among 5RT-PCR products, we isolated a homologous cDNA with hIL-8-R which were shown to be putative mIL-8-R cDNA.

  • PDF

PU.1 Is Identified as a Novel Metastasis Suppressor in Hepatocellular Carcinoma Regulating the miR-615-5p/IGF2 Axis

  • Song, Li-Jie;Zhang, Wei-Jie;Chang, Zhi-Wei;Pan, Yan-Feng;Zong, Hong;Fan, Qing-Xia;Wang, Liu-Xing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.9
    • /
    • pp.3667-3671
    • /
    • 2015
  • Invasion and metastasis is the major cause of tumor recurrence, difficulty for cure and low survival rate. Excavating key transcription factors, which can regulate tumor invasion and metastasis, are crucial to the development of therapeutic strategies for cancers. PU.1 is a master hematopoietic transcription factor and a vital regulator in life. Here, we report that, compared to adjacent non-cancerous tissues, expression of PU.1 mRNA in metastatic hepatocellular carcinoma (HCC), but not primary HCC, was significantly down-regulated. In addition, levels of PU.1 mRNA in metastatic hepatoma cell lines MHCC97L and MHCC97H were much lower than in non-metastatic Hep3B cells. Transwell invasion assays after PU.1 siRNA transfection showed that the invasion of hepatoma cell lines was increased markedly by PU.1 knockdown. Oppositely, overexpression of PU.1 suppressed the invasion of these cells. However, knockdown and overexpression of PU.1 did not influence proliferation. Finally, we tried to explore the potential mechanism of PU.1 suppressing hepatoma cell invasion. ChIP-qPCR analysis showed that PU.1 exhibited a high binding capacity with miR-615-5p promoter sequence. Overexpression of PU.1 caused a dramatic increase of pri-, pre- and mature miR-615-5p, as well as a marked decrease of miR-615-5p target gene IGF2. These data indicate that PU.1 inhibits invasion of human HCC through promoting miR-615-5p and suppressing IGF2. These findings improve our understanding of PU.1 regulatory roles and provided a potential target for metastatic HCC diagnosis and therapy.