• Title/Summary/Keyword: Helicopter noise

Search Result 123, Processing Time 0.031 seconds

Structural Dynamics Modification for a Large Structure using Component Mode Synthesis Methods (구조합성법을 이용한 큰 구조물에서의 구조동특성변경법)

  • Lee, Moon-Seok;Park, Youn-Sik;Park, Young-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.852-855
    • /
    • 2005
  • Structural Dynamic Modification(SDM) is a technique to improve structure's dynamic characteristics by adding and removing substructures or changing material properties and shape of structures. This paper describes SDM techniques applied to a large structure with too many DOFs. The goal of this SDM technique is to modify a targe structure efficiently for its natural frequencies to avoid excitation frequencies. In this case, models reduced by Component Mode Synthesis(CMS) method that is a coupling technique are used to analyze a large structure efficiently. This paper considers a helicopter deck model with 55,000 DOFs as an application.

  • PDF

Validation of Noise Prediction Theory Using Scaled Rotor Experiment for Hovering Condition (정지비행 조건에서의 축소 로터 실험을 통한 소음 예측 기법 검증)

  • Min, An-Ki;Ryi, Jae-Ha;Rhee, Wook;Choi, Jong-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.3
    • /
    • pp.201-208
    • /
    • 2012
  • In this paper, a series of experiment is performed for a scaled hovering rotor in a semi-anechoic chamber and the results are compared to the noise spectra predicted by using Lowson's loading noise equation and FW-H equation. It was founded that the sound directivity pattern for both experiments and predictions are similar in their trend. Meanwhile the FW-H equation showed better agreement with experiments in the near-field noise spectra, but at the far-field the Lowson's equation performed better. The discrete noise are known to be proportional to the loading on the blades, which can be controlled by collective pitch angle of the blades. It was founded that the predicted spectra with FW-H equation come close to the measured noise spectra in low collective pitch, but in high collective pitch angles the Lowson's equation be more reliable.

Chronic Aircraft Noise Exposure and Sustained Attention, Continuous Performance and Cognition in Children (만성 항공기 소음 노출과 아동의 지속주의력과 연속수행능력 및 인지기능)

  • Lim, Myung-Ho;Park, Young-Hyun;Lee, Woo-Chul;Paik, Ki-Chung;Kim, Hyun-Woo;Kim, Hyun-Joo;Rho, Sang-Chul;Kim, Hae-Young;Kwon, Ho-Jang
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.18 no.2
    • /
    • pp.145-153
    • /
    • 2007
  • Objectives: This study was focused on the influence of chronic aircraft noise exposure on children's continuous performance, intelligence and reading skill. Methods: We enrolled 586 children in 4-6th grade of 7 primary schools near air base in Korea. Continuous performance was measured using the computerized ADS program. We analyzed 477-512 children on the visual continuous performance test, auditory continuous performance test, intelligence test, and reading and the vocabulary test. Intelligence was measured using vocabulary, digit span, block design, and digit symbol tests of K-WISC-III. Results: The commission error and variability deviation of auditory continuous performance test and reading test were significantly higher among children in schools with the helicopter noise and the fighting plane noise compared to children in the low noised schools. Conclusion: There was a possibility that chronic aircraft noise exposure was associated with impairment of the school performance. The result of our study also shows chronic aircraft noise was associated with reading ability.

  • PDF

Design of Two Zoom Infrared Camels using Noise Uniformity Correction by Shutter Lens (셔터렌즈에 의한 검출기 불균일 보정을 적용한 이중배율 적외선 카메라 설계)

  • Ahn, Gyou-Bong;Kim, Seo-Hyun;Jung, Jae-Chul;Jo, Mun-Shin;Kim, Chang-Woo;Kim, Hyun-Sook
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.2
    • /
    • pp.135-141
    • /
    • 2007
  • This paper describes the design technology for a third generation thermal imaging system, which is more compact than before, using a $320\times240$ mid-IR focal plane detector. The third generation non-scanning thermal imaging system was constructed as a compact thermal imaging module as a reconnaissance, surveillance and navigation sensor for helicopter and infantry vehicles in the $1980's\sim1990's$ and now, we designed a new compact infrared camera and studied a new type of non-uniformity correction lens fer this camera.

Helicopter-borne and ground-towed radar surveys of the Fourcade Glacier on King George Island, Antarctica (남극 킹조지섬 포케이드 빙하의 헬리콥터 및 지상 레이다 탐사)

  • Kim, K.Y.;Lee, J.;Hong, M.H.;Hong, J.K.;Shon, H.
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.1
    • /
    • pp.51-60
    • /
    • 2010
  • To determine subglacial topography and internal features of the Fourcade Glacier on King George Island in Antarctica, helicopter-borne and ground-towed ground-penetrating radar (GPR) data were recorded along four profiles in November 2006. Signature deconvolution, f-k migration velocity analysis, and finite-difference depth migration applied to the mixed-phase, single-channel, ground-towed data, were effective in increasing vertical resolution, obtaining the velocity function, and yielding clear depth images, respectively. For the helicopter-borne GPR, migration velocities were obtained as root-mean-squared velocities in a two-layer model of air and ice. The radar sections show rugged subglacial topography, englacial sliding surfaces, and localised scattering noise. The maximum depth to the basement is over 79m in the subglacial valley adjacent to the south-eastern slope of the divide ridge between Fourcade and Moczydlowski Glaciers. In the ground-towed profile, we interpret a complicated conduit above possible basal water and other isolated cavities, which are a few metres wide. Near the terminus, the GPR profiles image sliding surfaces, fractures, and faults that will contribute to the tidewater calving mechanism forming icebergs in Potter Cove.

Measurements of Whole-body Vibration Exposed from UH60-Helicopter and Their Analysis Results (UH60 헬기 조종사의 피폭진동 측정 및 평가 결과)

  • Cheung, Wan-Sup;Byeon, Joo-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.132-137
    • /
    • 2005
  • This paper addresses what amount of whole-body vibration is exposed to pilots of UH60 helicopters during flight. To measure the whole-body exposed from the feet and seat, the 12-axis vibration measurement system was used. It enables simultaneous measurement of vibration exposure from the body contact area of the feet, hip and back. The measured 12-axis vibration signals are exploited to the comfort level of UH60 helicopters during flight. It is shown that the evaluated ride value is close to $0.74{\sim}0.79m/s^2$ and that it is equivalent to the semantic scale of 'fairly uncomfortable'. To assess the health effects of whole-body vibration exposed to pilots of UH60 helicopters during their flight, the rms-based and VDV(vibration dose value)-based evaluation results of measured four-axis vibration signals are shown in this work. The fatigue-decreased proficiency limit, whose level is half of the exposure limit, is expected to come after the two-hour flight. The exposure limit is shown to reach after the 10-hour flight.

  • PDF

Validation of the Strain Pattern Analysis (SPA) Measuring Technique (헬리콥터 Blade의 모드해석에 적용된 응력패턴해석 계측기법의 타당성)

  • Pakshir, Nabi
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.361-369
    • /
    • 1996
  • The accurate prediction of modal parameters of a rotating blade is an important requirement in the assessment of the dynamics of a helicopter rotor. Indeed, predictions of flight loads and stability are normally dependent on initially predicting the undamped mode shapes. A measuring technique, known as Strain Pattern Analysis (SPA), appears to be the most successful technique for measuring the mode shapes of rotating blades. This method was developed to be used on actual aircraft so no attempt was made to measure rotating mode shapes directly in order to validate the SPA method. This report summarizes results from experimental investigations which were carried out to validate the SPA method for the prediction of aerodynamically damped modes of a rotating blade. A series of modal tests were carried out on two rotor models in which the non-rotating, undamped and aerodynamically damped rotating modes were measured directly (strain and displacement patterns). It is shown that the SPA method to be very successful in itself but there are a number of limitations in validating this technique. To provide data which could be used to confidently validate theoretical prediction codes, existing limitations should be addressed.

  • PDF

Forced Vibration and Loads Analysis of Large-scale Wind Turbine Blades Considering Blade Bending and Torsion Coupling (굽힘 및 비틀림 연성 효과를 고려한 대형 풍력 터빈 블레이드의 강제 진동 및 하중 해석)

  • Kim, Kyung-Taek;Park, Jong-Po;Lee, Chong-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.256-263
    • /
    • 2008
  • The assumed modes method is developed to derive a set of linear differential equations describing the motion of a flexible wind turbine blade and to propose an approach to investigate the forced responses result from various wind excitations. In this work, we have adopted Euler beam theory and considered that the root of the blade is clamped at the rigid hub. And the aerodynamic parameters and forces are determined based on Blade Element Momentum (BEM) theory and quasi-steady airfoil aerodynamics. Numerical calculations show that this method gives good results and it can be used fur modeling and the forced vibration analysis including the coupling effect of wind-turbine blades, as well as turbo-machinery blades, aircraft propellers or helicopter rotor blades which may be considered as straight non-uniform beams with built-in pre-twist.

  • PDF

Design optimization and vibratory loads analysis of active twist rotor blades incorporating single crystal piezoelectric fiber composites (단결정 압전섬유작동기를 사용한 능동 비틀림 로터 블레이드의 최적 설계 및 진동하중 해석)

  • Park, Jae-Sang;Shin, Sang-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.85-92
    • /
    • 2007
  • This paper presents a design optimization of a new Advanced Active Blade Twist (AATR-II) blade incorporating single crystal Macro Fiber Composites (MFC) and conducts vibratory loads reduction analysis using an obtained optimal blade configuration. Due to the high actuation performance of the single crystal MFC, the AATR blade may reduce the helicopter vibration more efficiently even with a lower input-voltage as compared with the previous ATR blades. The design optimization provides the optimal cross-sectional configuration to maximize the tip twist actuation when a certain input-voltage is given. In order to maintain the properties of the original ATR blade, various constraints and bounds are considered for the design variables selected. After the design optimization is completed successfully, vibratory load reduction analysis of the optimized AATR-II blade in forward flight condition is conducted. The numerical result shows that the hub vibratory loads are reduced significantly although 20% input-voltage of the original ATR blade is used.

  • PDF

Transient Response Analysis for a Smart UAV Considering Dynamic Loads by Rotating Rotor and Wakes (회전로터 및 후류 동하중을 고려한 스마트 무인기 천이응답해석)

  • Kim, Hyun-Jung;Oh, Se-Won;Kim, Sung-Jun;Choi, Ik-Hyeon;Kim, Tae-Wook;Lee, Sang-Uk;Kim, Jin-Won;Lee, Jung-Jin;Kim, Dong-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.9 s.114
    • /
    • pp.926-936
    • /
    • 2006
  • In this study, structural vibration analyses of a smart unmanned aerial vehicle (UAV) have been conducted considering dynamic loads generated by rotating rotor and wakes. The present UAV (TR-S5-03) finite element model is constructed as a full three-dimensional configuration with different fuel conditions and tilting angles for helicopter, transition and airplane flight modes. Practical computational procedure for modal transient response analysis (MTRA) is established using general purpose finite element method (FEM) and computational fluid dynamics (CFD) technique. The dynamic loads generated by rotating blades in the transient and forward flight conditions are calculated by unsteady CFD technique with sliding mesh concept. As the results of present study, transient structural displacements and accelerations are presented in detail. In addition, vibration characteristics of structural parts and installed equipments are investigated for different fuel conditions and tilting angles.