• Title/Summary/Keyword: Helicopter landing

Search Result 53, Processing Time 0.025 seconds

Pitch Angle Rigging, Tracking and Balancing of Smart UAV Rotor System (스마트무인기 로터 피치각 리깅, 트랙킹 및 밸런싱)

  • Lee, Myeong Kyu;Kim, Yusin;Choi, Seong Wook
    • Journal of Aerospace System Engineering
    • /
    • v.3 no.3
    • /
    • pp.17-23
    • /
    • 2009
  • KARI SUAV (Smart Unmanned Aerial Vehicle) program is currently on the phase of ground and flight test. SUAV is a tilt rotor aircraft having the capability of vertical take-off/landing and high speed forward flight. The SUAV rotor system is 3-bladed, gimbaled hub type, which is not common for conventional helicopter configuration. In this paper, detailed procedure and method of rotor pitch rigging, tracking and balancing were described based on the experience of SUAV ground test.

  • PDF

Analysis of Flight Test Result for Control Performance of Smart UAV (스마트무인기의 비행제어 성능관련 비행시험 결과분석)

  • Kang, Young-Shin;Park, Bun-Jin;Cho, Am;Yoo, Chang-Sun;Koo, Sam-Ok
    • Aerospace Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.22-31
    • /
    • 2013
  • Flight tests on flight control performance of helicopter, conversion and airplane mode for the Smart UAV were completed. Automatic take-off and landing, automatic return home as well as automatic approach to hover were performed in helicopter mode. Climb/descent, left/right turn using speed and altitude hold mode were performed in each $10^{\circ}$ tilt angle in conversion mode. The rotor speed in airplane mode was reduced to 82% from 98% RPM in order to increase rotor efficiency with reducing Mach number at tip of rotors. It reached to the designed maximum speed, $V_{TAS}$=440 km/h at 3 km altitude. This paper presents the flight test result on full envelopment of Smart UAV. Detailed test plan and test data on control performance were also presented to prove that all data meets the flying qualities requirement.

A Study on the air traffic control system of Korea Light Aircraft Carrier (한국형 경항공모함 항공관제체계에 대한 연구)

  • Choi, Youn-chul;Jung, Yong-tae;Cho, Young-jin
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.5
    • /
    • pp.272-280
    • /
    • 2022
  • An aircraft carrier is a combat ship that acts as an aircraft base at sea and performs combat through aircraft mounted as a military ship operating the aircraft. The Navy proposed a 40,000-ton light aircraft carrier operation plan that could be equipped with vertical takeoff and landing fighter jets and helicopters around 2033, and based on this, this study examined the operation of aircraft control equipment among the aviation support systems required for operating light aircraft carriers in Korea. PriFly, TWR's ILARTS, ILM for airspace control, ASR, PAR, LAAS or RNAV, PALS (JPALS) for access control are required as essential equipment, and communication network and SCATT-16 are required along with URN-25 TACAN, ICLS (El/Az), ACLS OLS, MOVAS, IFLOLS, etc. This study consists of two parts, and part 2 will describe a specific control method on an aircraft carrier.

A Study on Assessment of Fatigue Durability for Composite Torque Link of Landing Gear (착륙장치 복합재 토크링크 피로내구성 평가에 대한 연구)

  • Kwon, Jung-Ho;Kang, Dae-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.6
    • /
    • pp.537-546
    • /
    • 2010
  • This research work contributed to a study for the procedure and methodology to assess the fatigue durability for a composite torque link of helicopter landing gear, which was newly developed and fabricated by the resin transfer moulding technique to interchange with metal component. The simulated load spectrum anticipated to be applied to the torque link during its operation life was generated using an advanced method of probabilistic random process, and the fatigue durability was evaluated by the strength degradation approach on the basis of material test data. The full scale fatigue test was also performed and compared with the analysis results.

스마트 무인기 흡기구 설계 및 성능해석

  • Jung, Yong-Wun;Jun, Yong-Min;Yang, Soo-Seok
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.197-207
    • /
    • 2004
  • The developing Smart UAV in KARI supposes high speed flight as like a conventional plane, as well as vertical takeoff and landing as like a helicopter. Therefore, the air intake system should be designed to provide the sufficient air flow to the engine and the maximum possible total pressure recovery at the engine intake screen over a wide range of flight conditions. For this purpose, we designed the intake system using a pitor type intake model and plenum chamber. In this paper, we designed the intake model and analyzed the performance of designed intake system using the general-purpose commercial CFD code, CFD-ACE+. The analysis results of the total pressure variation and the velocity distribution were illustrated in this paper. The pressure recovery and distortion coefficient at a plane coincident with the compressor inlet were calculated and streamline variation through the intake system was investigated at the worst flight condition as well as the standard flight condition.

  • PDF

Prediction of Performance Change for the Intake system of Smart UAV With Freestream Wind Direction Using CFD Analysis (CFD를 이용한 풍향에 따른 스마트무인기 흡기구 성능 변화 예측)

  • Jung Y. W.;Jun Y. M.;Yang S. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.95-99
    • /
    • 2004
  • The developing Smart UAV in KARI supposes high speed flight as like a conventional plane, as well as vertical takeoff and landing as like a helicopter. Therefore, the air intake system should be designed to provide the sufficient air flow to the engine and the maximum possible total pressure recovery at the engine intake screen over a wide range of flight conditions. For this purpose, we designed the intake system using a pilot type intake model and plenum chamber In this paper, we designed the intake model and analyzed the performance of designed intake system using the general-purpose commercial CFD code, CFD-ACE+ For 3-D calculation, we generated mesh using the unstructured gird and used $\kappa-\epsilon$ turbulence model. The analysis results of the total pressure variation and the velocity distribution was illustrated in this paper. The pressure recovery and distortion coefficient at a plane coincident with the compressor inlet were calculated and streamline variation through the intake system was investigated at the worst condition as well as the standard flight condition.

  • PDF

Aerodynamic Force Measurement of Counter-Rotating System (동축 반전 시스템의 공력측정)

  • Kim, Su-Yean;Choi, Jong-Wook;Kim, Sung-Cho
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.39-42
    • /
    • 2008
  • In the case of the general helicopter among rotorcraft, length of the rotor blade for thrust-generation is longer than that of fuselage and tail rotor is required in order to compensate moment of the fuselage. For those reasons, enough space for take-off and landing should be secured and an accessibility for building is low. Also, the accidents caused by tail rotor occur frequently. However, the case of counter-rotating has merits that tail rotor is unnecessary as well as length of the rotor blade can be shortened but has a weakness that the weight of body is increased. In the present study, aerodynamic force measurement on single rotor system equipped with NACA0012 airfoil, which has aspect ratio of 6 and chord length of 35.5 mm, was carried out. And measurement was conducted with blade which has a half size of the former blade by using single motor counter-rotating. Aerodynamic force measurement was acquired by using 6-component balances and coefficients of thrust and power were derived along the pitch angle varying from 0$^{\circ}$ to 90$^{\circ}$ with the increment of 10$^{\circ}$. Those aerodynamic force data will be utilized for the design and production of brand-new counter-rotating rotor blade system which has same thrust with single blade system and provides a good accessibility to building by reducing its blade length.

  • PDF

Multi-objective parametric optimization of FPSO hull dimensions

  • Lee, Jonghun;Ruy, Won-Sun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.734-745
    • /
    • 2021
  • In order to achieve a good and competitive FPSO design, the building cost and the motion performances are the two most critical and conflicting KPIs to be considered. In this study, the author's previous work (Lee, et al., 2021) on the optimization of an FPSO's hull dimensions with 1800 MBBLs storage capacity at Brazil field was extended using a multi-objective parametric optimization with the hull steel weight and the operability which are closely related to the building cost and the operational cost during the lifetime, respectively. For the purpose of more realistic and practical FPSO design, the constraints related to crew comfort and the safe helicopter take-off and landing operation were newly added. Also, the green water on deck was calculated accurately to check the suitability of the designed freeboard height using a newly developed real-time calculation module for the relative wave elevations. With aids of this updated optimization formulation, we presented multiple optimal FPSO dimensions expressed as a Pareto set which aids FPSO designers to conveniently select the practical and competitive dimensions. The excellence of the developed approach was verified by comparing the optimization results with those of FPSOs dimensioned for operation at West Africa and Brazil field.

Fatigue Analysis based on Kriging for Flaperon Joint of Tilt Rotor Type Aircraft (틸트 로터형 항공기의 플랩퍼론 연결부에 대한 크리깅 기반 피로해석)

  • Park, Young-Chul;Jang, Byoung-Uk;Im, Jong-Bin;Lee, Jung-Jin;Lee, Soo-Yong;Park, Jung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.6
    • /
    • pp.541-549
    • /
    • 2008
  • The fatigue analysis is performed to avoid structural failure in aerospace structures under repeated loads. In this paper, the fatigue life is estimated for the design of tilt rotor UAV. First of all, the fatigue load spectrum for tilt rotor UAV is generated. Fatigue analysis is done for the flaperon joint which may have FCL(fracture critical location). Tilt rotor UAV operates at two modes: helicopter mode such as taking off and landing; fixed wing mode like cruising. To make overall fatigue load spectrum, FELIX is used for helicopter mode and TWIST is used for fixed wing mode. The other hand, the Kriging meta model is used to get S-N regression curve for whole range of material life when S-N test data are analyzed. And then, the second order of S-N curve is accomplished by the least square method. In addition, the coefficient of determination method is used to ensure how accuracy it has. Finally, the fatigue life of flaperon joint is compared with that obtained by MSC. Fatigue.

Attitude Control using Quantitative Feedback Theory of a Quad-Rotor Vehicle with Plant Parametric Uncertainty (플랜트 파라미터의 불확실성을 포함한 4-회전익(Quad-Rotor) 비행체의 정량적 궤환 이론을 이용한 자세 제어)

  • Lee, ByungSeok;Heo, Moon-Beom;Lee, Joon Hwa
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.3
    • /
    • pp.243-253
    • /
    • 2014
  • This paper deals with the Quantitative Feedback Thoery(QFT) guaranteeing robustness in spite of the plant parametric uncertainty. In the frequency domain, the QFT guarantees the robustness of the design specification on the uncertainty of plant parameters and disturbance. In order to use the QFT, a selected plant is a Quad Rotor Vehicle(QRV) which has excellent maneuverability and possibility of vertical take-off and landing like the helicopter. And attitude control is examined the possibility satisfied the requirement specification under the setting parametric uncertainty of motors driving 4-blades. Additionally, in an attitude control, the pre-filter considering parameter range and operating range of a QRV was used. For these purpose, in this paper, by using QFTCT, that is the QFT Control Toolbox designing the controller in MATLAB by the QFT, each design phases are introduced.