• Title/Summary/Keyword: Helicopter landing

Search Result 53, Processing Time 0.024 seconds

A Simulation of 3-D Navigation System of the Helicopter based on TRN Using Matlab

  • Kim, Eui-Hong;Lee, Hong-Ro
    • Spatial Information Research
    • /
    • v.15 no.4
    • /
    • pp.363-370
    • /
    • 2007
  • This study has been carried for the development of the basic algorithm of helicopter navigation system based on TRN (Terrain Referenced Navigation) with information input from the GPS. The helicopter determines flight path due to Origination-Destination analysis on the Cartesian coordinate system of 3-D DTM. This system shows 3-D mesh map and the O-D flight path profile for the pilot's acknowledgement of the terrain, at first. The system builds TCF (terrain clearance floor) far the buffer zone upon the surface of ground relief to avid the ground collision. If the helicopter enters to the buffer zone during navigation, the real-time warning message which commands to raise the body pops up using Matlab menu. While departing or landing, control of the height of the body is possible. At present, the information (x, y, z coordinates) from the GPS is assumed to be input into the system every 92.8 m of horizontal distance while navigating along flight path. DTM of 3" interval has been adopted from that which was provided by ChumSungDae Co., Ltd..

  • PDF

Damage Tolerant Design for the Tilt Rotor UAV (틸트 로터형 무인항공기의 손상허용 설계)

  • Park, Young Chul;Im, Jong Bin;Park, Jung Sun
    • Journal of Aerospace System Engineering
    • /
    • v.1 no.2
    • /
    • pp.27-36
    • /
    • 2007
  • The Damage Tolerant Design is developed to help alleviate structural failure and cracking problems in aerospace structures. Recently, the Damage Tolerant Design is required and recommended for most of aircraft design. In this paper, the damage tolerant design is applied to tilt rotor UAV. First of all, the fatigue load spectrum for the tilt rotor UAV is developed and fatigue analysis is performed for the flaperon joint which has FCL (fatigue critical location). Tilt rotor UAV has two modes: helicopter mode when UAV is taking off and landing; fixed wing mode when the tilt rotor UAV is cruising. To make fatigue load spectrum, FELIX is used for helicopter mode. TWIST is used for fixed wing mode. Fatigue analysis of flaperon joint is performed using fatigue load spectrum. E-N curve approach is used for picking crack initiation point. The LEFM(Linear Elastic Fracture Method) is considered for analyzing crack growth or propagation. Finally, including the crack initiation and propagation, the fatigue life is evaluated. Therefore the Damage Tolerant Design can be done.

  • PDF

Fatigue analysis of helideck structures (헬리데크 구조물의 피로해석)

  • Jeon, Sangik;Oh, Simkwan;Roh, Jisun;Kim, Bongjae;Jang, Kibok
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2015.09a
    • /
    • pp.63-68
    • /
    • 2015
  • This paper presents fatigue analysis of helideck structures located in FPSO. After FPSO is moved to the target position where production of resource is performed, FPSO stays at the target position and performs production of resource, storage and off-loading during the design life. Helideck structure is located in FPSO essentially for the movement of personnel and life rescue at emergency situations by using helicopters. Because inertial load induced by FPSO motion and landing and taking-off load of helicopter occur at helideck structures cyclically, helideck structures should be designed to withstand fatigue loads. Therefore, The fatigue assessment of helideck structures should be performed with fatigue loads. Effect of stress concentration due to misalignment between welded plates is considered in fatigue assessment additionally.

  • PDF

A Study on the Urban Air Mobility(UAM) Operation Pilot Qualification System

  • Kim, Su-Ro;Cho, Young-Jin;Jeon, Seung-Mok
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.201-208
    • /
    • 2022
  • As around the world, ground and underground transportation capacity is reaching its limit, centering on urban areas. As urban traffic becomes congested, time and cost are astronomical, and environmental destruction caused by urban pollution is becoming increasingly serious. As a way to solve this problem, the means of flying over the air are in the spotlight as the next generation of future transportation, and the concept of urban air mobility (UAM, Urban Air Mobility) is defined as systematic planning. The development of an electric-powered vertical take-off (eVTOL) aircraft that obtains electric power through a battery using a personal aerial vehicle (PAV) as a means of transportation has accelerated. As the aircraft development of new technology aircraft in the evtol method is actively carried out, the need to prepare systems such as aircraft certification standards, pilot qualification systems, and qualification management is emerging. The Federal Aviation Administration (FAA) and the European Union Aviation Safety Agency (EASA), which lead international standards, announced new special technical conditions and temporary regulations SCVTOL-01, respectively. However, the pilot qualification system for operating the uam aircraft has not yet been clearly announced. Therefore, this paper analyzes the recently announced FAA regulations and EASA regulations to identify differences and directions in perspectives on UAMs and study the existing vertical take-off and landing aircraft (VTOL) pilot qualification system to present directions for qualification classification.

Parametric Study for Helideck Design using Finite Element Analysis (헬리데크 설계를 위한 유한요소해석 기반 매개변수연구)

  • Park, Doo-Hwan;Park, Yong-Jun;Park, Joo-Sin;Kim, Jeong-Hyeon;Kweon, Byoung-Cheol;Lee, Jae-Myung
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.411-422
    • /
    • 2014
  • A helideck is a very valuable offshore structure for the take-off and landing of a helicopter. In order to design a helideck, the design parameters and various loads defined by the regulations related to the design of a helideck should be applied. In this study, a risk analysis was performed based on the helicopter accidents for seven years, and the frequency and possible reasons for accidents involving helidecks were investigated. In addition, a finite element analysis of a steel helideck mounted on the upper deck of a ship (shuttle tanker) was performed with the load that should be considered when designing a helideck. Based on the results, a parametric study of helideck was carried out by applying a variety of design parameters, and an improved helideck design was presented. This improved helideck reduced the steel used by up to 24% compared to the initial helideck design, and the results of a finite element analysis were analyzed and compared with those of the initial analysis.

Crashworthy Design of Helicopter Landing Gear (헬기용 착륙장치 내추락 설계)

  • Lee, Sang-Wook;Kim, Tae-Uk;Shin, Jeong-Woo;Lee, Seung-Gyu;Kim, Sung-Chan;Hwang, In-Hee;Lee, Je-Dong
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.12b
    • /
    • pp.507-510
    • /
    • 2011
  • 착륙장치는 완충장치를 이용하여 항공기 착륙 시의 충격을 흡수하는 역할을 한다. 군용 헬기를 비롯한 일부 항공기에서는 비상 착륙시 탑승원의 생존성과 안전성을 향상시키기 위해, 착륙장치에 내추락 요구조건을 부여하기도 한다. 본 연구에서는 내추락 요구조건을 충족하는 다양한 착륙장치 설계 개념 가운데, 파손 장치를 이용한 전륜 착륙장치와 Blow-off 밸브를 이용한 주륜 착륙장치 설계를 제시하고, 성능해석을 통한 입증 과정을 소개한다.

  • PDF

Development of a Coaxial Rotor Flying Robot for Observation (감시용 동축로터 비행로봇의 개발)

  • Kang, Min-Sung;Shin, Jin-Ok;Park, Sang-Deok;Whang, Se-Hee;Cho, Kuk;Kim, Duk-Hoo;Ji, Sang-Ki
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.2
    • /
    • pp.101-107
    • /
    • 2007
  • A coaxial rotor flying robot is developed for surveying and reconnoitering various circumstances under calamity environment. The robot has two contrarotating rotors on a common axis, an embedded microcontroller, an IMU(Inertial Measurement Unit), an IR sensor for height control, a micro camera for surveillance, ultrasonic position sensors and wireless communication devices. A bell-bar mounted on the top of the upper rotor hub increases stability and improves flight performance. In this paper, we present a dynamic model of a coaxial rotor flying robot and design an embedded controller far the robot, and implement them to control the developed flying robot. Experimental results show that the proposed controller is valid for autonomous hovering and position control.

Parametric study for suggestion of the design procedure for offshore plant helideck subjected to impact load

  • Park, Doo-Hwan;Kim, Jeong-Hyeon;Park, Yong-Jun;Jeon, Jun-Hwan;Kim, Myung-Hyun;Lee, Jae-Myung
    • Structural Engineering and Mechanics
    • /
    • v.60 no.5
    • /
    • pp.851-873
    • /
    • 2016
  • Helidecks are vital structures that act as a last exit in an emergency. They transport people and goods to and from ships and offshore plants. When designing the structure of a helideck, it is necessary to comply with loading conditions and design parameters specified in existing professional design standards and regulations. In the present study, finite element analysis (FEA) was conducted with regard to a steel helideck mounted on the upper deck of a ship considering the emergency landing of the helicopter. The superstructure and substructure were designed, and the influence of various design parameters was analyzed on the basis of the FEA results.

A Real-Time NDGPS/INS Navigation System Based on Artificial Vision for Helicopter (인공시계기반 헬기용 3차원 항법시스템 구성)

  • Kim, Jae-Hyung;Lyou, Joon;Kwak, Hwy-Kuen
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.30-39
    • /
    • 2008
  • An artificial vision aided NDGPS/INS system has been developed and tested in the dynamic environment of ground and flight vehicles to evaluate the overall system performance. The results show the significant advantages in position accuracy and situation awareness. Accuracy meets the CAT-I precision approach and landing using NDGPS/INS integration. Also we confirm the proposed system is effective enough to improve flight safety by using artificial vision. The system design, software algorithm, and flight test results are presented in details.

A Study on the Systematic Crashworthiness Design Concept (체계적인 헬리콥터 내추락성 설계개념 연구)

  • Hwang, Jungsun;Jung, Jae-Kwon;Hyun, Young-O
    • Journal of Aerospace System Engineering
    • /
    • v.7 no.2
    • /
    • pp.35-41
    • /
    • 2013
  • Crashworthiness design concept in the helicopter development is still under evolutionary stage. Survivability in the event of a crash was remarkably improved and this fact can be recognized by the analysis results on the AH-64 Apache and UH-60 Black Hawk crash accidents. Those two models are the first ones in which the crashworthiness design concept was applied with a full-scale requirement. Here we need to notice that under-design of the system results in unexpected injuries and deaths while over-design of the crashworthy elements result in unnecessary weight and costs. If landing gear system would be verified to have enough energy absorption capability in the specified vertical velocity interval, then design requirements of the airframe, fuel system and seats could be modified positively. In this paper, the right and systematic crashworthiness design concept is reviewed on the assumption that design requirements of some crashworthy elements could be partially tailored.