• Title/Summary/Keyword: Helicopter Design

Search Result 298, Processing Time 0.034 seconds

A Study on Establishment of the Helicopter Initial Design Model Using the Modified Weight Estimation Equations (수정된 추정식을 적용한 헬리콥터 초기 설계 모델 정립에 관한 연구)

  • Kim, Seung Bum;Choi, Jong Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.3
    • /
    • pp.213-223
    • /
    • 2015
  • The helicopter initial design model was established by using the latest weight estimation equations based on the Tishchenko's methodology through the study existing initial design tools. The sequential decomposition method is used to reduce analysis time in the sizing. Empirical parameters of the weight estimation equation were also extracted from numerical and regression analysis for a helicopter database. Design input and output values were compared with the RISPECT design tool. Finally, comparison of the re-design resulting for several existing helicopters was presented and showed the good agreement within less than 5% in the weight estimation and main rotor sizing. Established initial design model was proved to be effectively used as initial design tool.

Centrifugal Clutch Design for an Unmanned Helicopter - Theoretical Analysis of Power Transfer - (농용 무인헬리콥터의 원심클러치 설계 - 동력 전달의 이론분석 -)

  • Lee, J.H.;Koo, Y.M.;Shin, S.K.
    • Journal of Biosystems Engineering
    • /
    • v.33 no.1
    • /
    • pp.14-20
    • /
    • 2008
  • An agricultural unmanned helicopter was suggested for an alternative to current pesticide application methods to solve such problems as high cost, low efficiency, shirking task and unsafe work. To pursuit this trend, researches on the development of unmanned helicopters have been accelerated in Korea as well. In this research, a guide type centrifugal clutch that plays an important role in the unmanned helicopter was studied. Theoretical analyses and experimental tests were conducted for designing an optimal clutches. Main design factors of the guide type centrifugal clutch were found to be spring constant, free length of spring, mass of friction sector, contact area, allowable pressure, number of friction sector, friction coefficient, radius of drum, and clutch arrangement. And these design factors could be the functions of engaging engine speed and desired power transfer capacity. The result of the single clutch test showed the power transfer capacity of 14.1 PS at 5,800 rpm and the result of the dual clutch test showed that the capacity of 17.7 PS at 5,600 rpm. These experimental results agreed well the theoretical simulations.

Power and Trim Estimation for Helicopter Sizing and Performance Analysis

  • Laxman, Vaitla;Lim, Jae-Hoon;Shin, Sang-Joon;Ko, Kwang-Ho;Jung, Sung-Nam
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.2
    • /
    • pp.156-162
    • /
    • 2011
  • The preliminary design stage of helicopters consists of various operations and in each operation design several detailed analysis tasks are needed. The analysis tasks include performance and the required power estimation. In helicopter design, those are usually carried out by adopting the momentum theory. In this paper, an explicit form of computational analysis based on the blade element theory and uniform/non-uniform inflow model is developed. The other motivation of the present development is to obtain trim and required power estimation for various helicopter configurations. Sectional and hub loads, power, trim, and flapping equations are derived by using a symbolic tool. Iterative computations are carried out till convergence is achieved in the blade response, inflow, and trim. The predictions regarding the trim and power estimation turn out to be correlated well with the experimental results. The effect of inflow is further investigated. It is found that the present prediction for the lateral cyclic pitch angle is improved with the non-uniform inflow model as compared to that by the uniform inflow model. The presently improved trim and power estimation will be useful for future helicopter sizing and performance analysis.

Structural Design and Analysis of Composite Parts for Small-scaled Hingeless Hub System of Helicopter (헬리콥터용 힌지없는 축소 복합재료 허브부품 구조 설계 및 해석)

  • Kim, Deog-Kwan;Joo, Gene
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.173-176
    • /
    • 2002
  • This paper describes the design procedure of composite parts for hingeless hub system of helicopter. These composite parts are composed of flexure and sleeve. The design of this composite flexure is an important technique in hingeless hub system since the rotor system stability and dynamic characteristics depends on this flexure characteristics. The objective of this research is to replace the existing metal hub parts with composite to improve the performance and stability. First, the coupon test of candidate composite material for hub parts was conducted. The hub parts was designed based on test results and the manufacturing possibility by using Fiber Placement System(FPS) was checked. Also the dynamic analysis and stress analysis of composite hub parts was conducted. Through this research, we will find out the possibility of replacing existing metal hub parts with composite.

  • PDF

Manufacture and Structural Test of the Small-scaled Composite Hingeless Hub Part for Helicopter (헬리콥터용 축소 복합재료 힌지없는 허브 부품 제작 및 구조 시험)

  • Kim, Deog-Kwan;Hong, Dan-Bi;Kee, Young-Jung;Rhee, Wook;Lee, Myeong-Kyu
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.119-122
    • /
    • 2003
  • This report describes the procedure of detailed design and structural test for the composite flexure which is a part of the hingeless hub system. First, stacking sequence design for composite flexure was done, and structural analysis by using NASTRAN was made to verify structural stability and safety. Using FPS installed at KIMM, composite flexure was laid up and cured using a autoclave. Before rotor ground test, the basic structural tests such as a bench test, tensile strength test and shear strength test, for flexure, were accomplished. Through replacing existing metal hub part with new fabricated composite flexure, improvement of aeroelastic stability and weight reduction were achieved. This result will be applied to composite rotor system design fur helicopter.

  • PDF

Design of Lateral SCAS based on H for Tilt Rotor Aircraft (H 기반 틸트로터 항공기 횡방향 SCAS 설계)

  • Lee, Jangho;Yoo, Changsun;Walker, Daniel J.
    • Journal of Aerospace System Engineering
    • /
    • v.2 no.3
    • /
    • pp.1-6
    • /
    • 2008
  • The tilt rotor aircraft has the flight characteristics which takes off vertically like a helicopter and flies forward like an airplane. Especially, the transition process from a helicopter to an airplane mode requires not only the mixing of control inputs but also the stability and controllability augmentation system(SCAS) in order to keep the safe flight because there are compound flight dynamic characteristics of a helicopter and an airplane including non-linearity, uncertainty. This paper describes the design of SCAS in a lateral motion for the tilt rotor aircraft based on the $H_{\infty}$ control method, which was performed from mathematical model with weighting matrix based on the relationship between the $H_{\infty}$ norm and the sensitivity function. Through simulation analysis for the controller designed on the $H_{\infty}$ control theory, it was shown that this method may be applied to the control design of the tilt rotor aircraft.

  • PDF

Process Design for Yoke Forming of Unmanned Helicopter (무인헬기용 요크 성형을 위한 공정 설계)

  • Hur, Kwan-Do;Kim, Ki-Sung;Chun, Se-Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.4
    • /
    • pp.28-33
    • /
    • 2009
  • Yoke is a part of rotor in unmanned helicopter. It was transferred power of engine to the rotor. It has been usually produced by machining and used wastefully material. And it has been considered to improve its proof stress against repeated loading of the products. Therefore we studied Forging process for satisfaction of these ability and process design for yoke forming has been studied by using FE analysis. Die design and forming analysis have been performed according to the conditions such as billet volume, flash control, cavity filling, and the distribution of damage in the products. In the comparison between die forging processes, side punch effects has been investigated by considering billet dimensions.

  • PDF

A study on the condition for the design of helicopter control system (헬리콥터 조종계통 설계를 위한 트림에 관한 연구)

  • 김현석;황명신
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.889-893
    • /
    • 1991
  • This paper describe the mathematical model of helicopter rotor, which is suitable for the calculation of trim condition to develop the stability and control. The mathematical model is a nonlinear, total force and moment model of a single main rotor helicopter. The effects of fuselage, tail rotor, horizontal tail, and vertical tail are included. The phase angle and stick displacement are obtained and compared at the trim condition.

  • PDF

A study on fire design accidental loads for aluminum safety helidecks

  • Kim, Sang Jin;Lee, Jin;Paik, Jeom Kee;Seo, Jung Kwan;Shin, Won Heaop;Park, Joo Shin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.6
    • /
    • pp.519-529
    • /
    • 2016
  • The helideck structure must satisfy the safety requirements associated with various environmental and accidental loads. Especially, there have been a number of fire accidents offshore due to helicopter collision (take-off and/or landing) in recent decades. To prevent further accidents, a substantial amount of effort has been directed toward the management of fire in the safety design of offshore helidecks. The aims of this study are to introduce and apply a procedure for quantitative risk assessment and management of fires by defining the fire loads with an applied example. The frequency of helicopter accidents are considered, and design accidental levels are applied. The proposed procedures for determining design fire loads can be efficiently applied in offshore helideck development projects.

A Development and Verification Process of Auto Generated Code for Fly-By-Wire Helicopter Control Law (Fly-By-Wire 헬리콥터 비행제어법칙 자동생성코드 개발 및 검증 프로세스)

  • Ahn, Seong-Jun;Kim, Chong-Sup;Cho, In-Je;Heo, Jin-Goo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.6
    • /
    • pp.488-494
    • /
    • 2013
  • The control law design and analysis environment of the FBW helicopter system have been developed using model base design method. The model based design is generally used in a aircraft, unmanned aerial system and automobile as well as rotorcraft development. The model based design provides many advantages such as development risk and schedule reduction using simulation and autocode generation. This paper describes a development of process for verification and validation of auto generated code for FBW helicopter flight control law. And this process is applied for Fly-By-Wire Helicopter Development Project. The results of functional test for auto generated code meet several specific requirements.